Generalized Orbifolds in Conformal Field Theory: Compact Hypergroups

Simone Del Vecchio

based on joint work with Marcel Bischoff and Luca Giorgetti

Virtual LQP / LQP45 workshop

17 June 2020

Let A be a conformal net and $\mathcal{B} \subset \mathcal{A}$ a conformal subnet.

Question: Is there an "algebraic object" K acting on A for which $B = A^K$? Conversely: If K suitably acts on A, is $B := A^K$ a conformal subnet?

Can then have statements of the type: If $\mathcal{B} \subset \mathcal{A}$ with $\mathcal{B} = \mathcal{A}^K$ then all intermediate conformal subnets C.

$$
\mathcal{B}\subset\mathcal{C}\subset\mathcal{A},
$$

are given by fixed points under the action of subobjects of K on \mathcal{A} .

Compact Hypergroups

Definition

We say a compact Hausdorff space K with distinguished element $e \in K$ and continuous involution $\overline{\cdot} : K \to K, k \mapsto k$, with $\overline{e} = e$ is a compact hypergroup, if

- $\bullet\,$ The Banach space $M^b(K)$ of complex Radon measures has a convolution product ∗ which is associative, bilinear, weakly continuous.
- For $x, y \in K$ the measure $\delta_x * \delta_y$ is a probability measure.
- The mapping $(x, y) \rightarrow \delta_x * \delta_y$ is continuous.
- $\delta_e * \delta_x = \delta_x * \delta_e = \delta_x$ for all $x \in K$.
- $\overline{\delta_x * \delta_y} = \delta_{\overline{x}} * \delta_{\overline{x}}$, where $\overline{\mu}(k) = \mu(\overline{k})$.
- $\bullet \ \exists$ faithful probability measure $\mu_K \in M^b(K)$ such that for all $f,g\in C(K)$,

$$
\int_{K} f(x*y)g(x)d\mu_K(x) = \int_{K} f(x)g(x*\bar{y})d\mu_K(x)
$$

with

$$
f(x * y) := \int_K f(k) d(\delta_x * \delta_y)(k).
$$

Conformal Nets

Let $\mathcal I$ be the set of nonempty, nondense, open intervals of $S^1.$ A conformal net on S^1 is a family $\mathcal{A} = \{\mathcal{A}(I): I \in \mathcal{I}\}$ of von Neumann algebras, acting on an infinite-dimensional separable complex Hilbert space H , satisfying the following properties:

- Isotony: $\mathcal{A}(I_1) \subset \mathcal{A}(I_2)$, if $I_1 \subset I_2, I_1, I_2 \in \mathcal{I}$.
- Locality: $\mathcal{A}(I_1) \subset \mathcal{A}(I_2)'$, if $I_1 \cap I_2 = \emptyset, I_1, I_2 \in \mathcal{I}$.
- Möbius covariance: There exists a strongly continuous unitary representation U of PSL $(2,\mathbb{R})$ in H such that $U(g)\mathcal{A}(I)U(g)^* = A(gI), I \in \mathcal{I}$, $g \in \mathsf{PSL}(2,\mathbb{R})$, where $\mathsf{PSL}(2,\mathbb{R})$ acts on S^1 by Möbius transformations.
- Positivity of the energy: The generator of rotations L_0 has nonnegative spectrum.
- Existence and uniqueness of the vacuum: There exists a unique (up to phase) U-invariant unit vector $\Omega \in \mathcal{H}$.
- Cyclicity of the vacuum: Ω is cyclic for the algebra $\mathcal{A}(S^1) := \cup_{I \in \mathcal{I}} \mathcal{A}(I)$.

Let ${\mathcal A}$ be a conformal net on $S^1,$ ${\mathcal B}\subset {\mathcal A}$ a conformal subnet. Let $\mathcal{N} := \mathcal{B}(I)$, $\mathcal{M} := \mathcal{A}(I)$ for a fixed $I \in \mathcal{I}$ (type III factors).

End(\mathcal{N}) is the category of unital endomorphisms of $\mathcal N$ with

$$
\operatorname{Hom}(\rho, \sigma) := \{ T \in \mathcal{N} : T\rho(n) = \sigma(n)T \text{ for all } n \in \mathcal{N} \}
$$

for $\rho, \sigma \in End(\mathcal{N})$, and tensor product

$$
\rho\otimes\sigma:=\rho\circ\sigma,
$$

 $T_1 \otimes T_2 := T_1 \rho_1(T_2) = \sigma_1(T_2) T_1.$ for $T_1 \in \text{Hom}(\rho_1, \sigma_1)$, $T_2 \in \text{Hom}(\rho_2, \sigma_2)$, $\rho_1, \rho_2, \sigma_1, \sigma_2 \in \text{End}(\mathcal{N})$. Let $\mathcal{N} := \mathcal{B}(I)$, $\mathcal{M} := \mathcal{A}(I)$.

Let $\iota: \mathcal{N} \to \mathcal{M}$ be the embedding homomorphism of \mathcal{N} in \mathcal{M} , then

 $\gamma := \iota \overline{\iota} \in \mathsf{End}(\mathcal{M})$ is the canonical endomorphism of $\mathcal{N} \subset \mathcal{M}$

 $\theta := \overline{\iota} \iota \in \mathsf{End}(\mathcal{N})$ is the dual canonical endomorphism of $\mathcal{N} \subset \mathcal{M}$

• Any $E\in E(\mathcal{M},\mathcal{N})$ is a Stinespring dilation of $\gamma\colon\,E(\cdot)=w^*\gamma(\cdot)w$ with $w \in \text{Hom}(\text{id}, \theta)$ [Longo 90].

 γ and θ may be defined by Tomita-Takesaki modular theory even if $\bar{\iota}$ does not exist as in a rigid tensor category [Longo 90].

Let $\langle \theta \rangle$ denote the rigid category generated by finite-dimensional subendomorphisms of θ .

Definition (Discreteness)

If $\mathcal{N} \subset \mathcal{M}$ is an irreducible subfactor $(\mathcal{M} \cap \mathcal{N}' = \mathbb{C})$ with normal, faithful conditional expectation E , then

 $\mathcal{N} \subset \mathcal{M}$ discrete $\Leftrightarrow \theta \cong \bigoplus_i \rho_i$ with $\dim(\rho_i) < \infty$.

$$
\mathrm{Hom}(\theta,\theta)\cong \bigoplus_{[\rho]} M_{n_\rho}(\mathbb{C})
$$

Definition (Charged Intertwiners)

Let $\rho \in \mathrm{Obj}(\langle \theta \rangle)$.

$$
H_{\rho} := \operatorname{Hom}(\iota, \iota \circ \rho) = \{ \psi \in \mathcal{M} : \psi \iota(n) = \iota(\rho(n)) \psi \text{ for all } n \in \mathcal{N} \}.
$$

Recall $E(\cdot) = w^*\gamma(\cdot)w$ with $w \in \text{Hom}(\text{id}, \theta)$.

$$
T_{\rho}: H_{\rho} \times H_{\rho} \to \text{Hom}(\theta, \theta) \subset \mathcal{N}
$$

$$
(\psi_1, \psi_2) \mapsto \gamma(\psi_1^*) w w^* \gamma(\psi_2)
$$

Construction of Hypergroup - Algebra of Trigonometric Polynomials

$$
\mathrm{Hom}(\theta,\theta)\cong \bigoplus_{[\rho]} M_{n_\rho}(\mathbb{C})
$$

Recall $E(\cdot) = w^*\gamma(\cdot)w$ with $w \in \text{Hom}(\text{id}, \theta)$.

$$
T_{\rho}: H_{\rho} \times H_{\rho} \to \text{Hom}(\theta, \theta) \subset \mathcal{N}
$$

$$
(\psi_1, \psi_2) \mapsto \gamma(\psi_1^*) w w^* \gamma(\psi_2)
$$

Definition (Algebra of Trigonometric Polynomials)

$$
\mathsf{Trig}(\mathcal{N} \subset \mathcal{M}) := \mathsf{Span}_{\mathbb{C}}\{T_\rho(\psi_1,\psi_2): \rho \in \mathsf{Obj}(\langle \theta \rangle), \psi_1,\psi_2 \in \mathcal{H}_\rho\},
$$

$$
T_{\rho_1}(\psi_1, \psi_2) * T_{\rho_2}(\psi_3, \psi_4) := T_{\rho_1 \circ \rho_2}(\psi_1 \psi_3, \psi_2 \psi_4),
$$

\n• $\colon \psi \in \mathcal{H}_{\rho} \to \psi^{\bullet} := \psi^* \iota(\bar{r}_{\rho}) \in \mathcal{H}_{\bar{\rho}},$
\n $(T_{\rho}(\psi_1, \psi_2))^{\bullet} := T_{\bar{\rho}}(\psi_1^{\bullet}, \psi_2^{\bullet}).$

Theorem (M. Bischoff, S.D.V, L. Giorgetti)

 $(\text{Trig}(\mathcal{N} \subset \mathcal{M}), *, \bullet)$ is a unital, associative algebra with involution. If $\mathcal{N} \subset \mathcal{M}$ is a local subfactor then $(\text{Trig}(\mathcal{N} \subset \mathcal{M}), *, \bullet)$ is commutative.

Definition

A discrete, irreducible subfactor $\mathcal{N} \subset \mathcal{M}$ is local if

$$
\psi_{\rho}\psi_{\sigma}=\varepsilon_{\rho,\sigma}^{\pm}\psi_{\sigma}\psi_{\rho}
$$

for all $\psi_\rho\in H_\rho, \psi_\sigma\in H_\sigma$, $\rho,\sigma\in$ Obj $(\langle\theta\rangle)$ with $\varepsilon_{\rho,\sigma}^\pm$ the DHR braiding.

Adjointable UCP maps

Let Ω be a cyclic and separating vector for M.

Definition

Let $UCP_{\mathcal{N}}(\mathcal{M}, \Omega)$ denote the set of normal linear maps $\phi \colon \mathcal{M} \to \mathcal{M}$ with the following properties

- \bullet ϕ is unital and completely positive (UCP).
- \bullet φ preserves the state given by Ω , i.e. $(\Omega, \phi(\cdot)\Omega) = (\Omega, \cdot \Omega)$.
- \bullet ϕ is N-bimodular, i.e. $\phi(n_1mn_2) = n_1\phi(m)n_2$ for every $n_1, n_2 \in \mathcal{N}$, $m \in \mathcal{M}$.

Lemma

Under our hypothesis for $\mathcal{N} \subset \mathcal{M}$, every $\phi \in UCP_{\mathcal{N}}(\mathcal{M}, \Omega)$ is Ω -adjointable, i.e. $\exists \phi^\# \in UCP_\mathcal{N}(\mathcal{M}, \Omega)$ such that

$$
(\phi^{\#}(m_1)\Omega, m_2\Omega) = (m_1\Omega, \phi(m_2)\Omega)
$$

for every $m_1, m_2 \in \mathcal{M}$.

Duality Pairing

There is a duality pairing between $\mathsf{UCP}_\mathcal{N}(\mathcal{M}, \Omega)$ and $(\mathsf{Trig}(\mathcal{N}\subset \mathcal{M}), *, \bullet)$

$$
\langle \cdot, \cdot \rangle: \mathsf{UCP}_{\mathcal{N}}(\mathcal{M}, \Omega) \times \mathsf{Trig}(\mathcal{N} \subset \mathcal{M}) \to \mathbb{C}
$$

$$
\langle \phi, T_{\rho}(\psi_1, \psi_2) \rangle := \psi_1^* \phi(\psi_2) \in \text{Hom}(\iota, \iota) = \mathbb{C} \,\text{id}
$$

Denote by $\omega_{\phi} := \langle \phi, \cdot \rangle$. ω_{ϕ} is a positive linear functional.

Duality Pairing

There is a duality pairing between $\mathsf{UCP}_\mathcal{N}(\mathcal{M}, \Omega)$ and $(\mathsf{Trig}(\mathcal{N}\subset \mathcal{M}), *, \bullet)$

$$
\langle \cdot, \cdot \rangle \colon \mathsf{UCP}_{\mathcal{N}}(\mathcal{M}, \Omega) \times \mathsf{Trig}(\mathcal{N} \subset \mathcal{M}) \to \mathbb{C}
$$

$$
\langle \phi, T_{\rho}(\psi_1, \psi_2) \rangle := \psi_1^* \phi(\psi_2) \in \text{Hom}(\iota, \iota) = \mathbb{C} \,\text{id}
$$

Denote by $\omega_{\phi} := \langle \phi, \cdot \rangle$. ω_{ϕ} is a positive linear functional.

Consider ω_E , with E conditional expectation of $\mathcal{N} \subset \mathcal{M}$. Let λ_E be the GNS representation of $(\mathsf{Trig}(\mathcal{N}\subset \mathcal{M}), *, \bullet)$ wrt $\omega_E.$

Lemma

 λ_E is a faithful representation of $(\mathit{Trig}(\mathcal{N}\subset \mathcal{M}), * , \bullet)$ by bounded operators.

Reduced C^* -algebra of $\mathcal{N} \subset \mathcal{M}$

Let λ_E be the GNS representation of $(\mathsf{Trig}(\mathcal{N}\subset \mathcal{M}), *, \bullet)$ wrt $\omega_E.$

Denote by $C_E^{\ast}(\mathcal{N} \subset \mathcal{M})$ the closure of the image of $\lambda_E.$

Remark

 $C^*_E(\mathcal{N}\subset \mathcal{M})$ is a commutative and separable C^* -algebra and thus

$$
C_E^*(\mathcal{N} \subset \mathcal{M}) \cong C(K)
$$

for some compact, metrizable topological space K .

Reduced C^* -algebra of $\mathcal{N} \subset \mathcal{M}$

Let λ_E be the GNS representation of $(\mathsf{Trig}(\mathcal{N}\subset \mathcal{M}), *, \bullet)$ wrt $\omega_E.$

Denote by $C_E^{\ast}(\mathcal{N} \subset \mathcal{M})$ the closure of the image of $\lambda_E.$

Remark

 $C^*_E(\mathcal{N}\subset \mathcal{M})$ is a commutative and separable C^* -algebra and thus

$$
C_E^*(\mathcal{N} \subset \mathcal{M}) \cong C(K)
$$

for some compact, metrizable topological space K .

Theorem

The duality map $\phi \to \omega_{\phi}$ lifts to a map between $\mathsf{UCP}_N(\mathcal{M}, \Omega)$ and states on $C_E^*(\mathcal{N} \subset \mathcal{M}).$

```
C_E^*(\mathcal{N} \subset \mathcal{M}) \cong C(K)
```
for some compact, metrizable topological space K .

```
Theorem (M. Bischoff. S.D.V., L. Giorgetti)
The duality map
                                             \phi \mapsto \omega_{\phi}
```
is a homeomorphism between

- $UCP_N(\mathcal{M}, \Omega)$
- the set of states ω on $C_E^*(\mathcal{N} \subset \mathcal{M})$.

In particular it restricts to a homeomorphism between

- Extr(UCP_N(M, Ω)) (Extreme points of UCP_N(M, Ω))
- K .

Corollary

$$
\mathit{UCP}_{\mathcal{N}}(\mathcal{M},\Omega)\cong M^b_+(\mathit{Extr}(\mathit{UCP}_{\mathcal{N}}(\mathcal{M},\Omega)))
$$

where $M^b_+(\mathsf{Extr}(\mathsf{UCP}_{\mathcal{N}}(\mathcal{M}, \Omega)))$ denotes the positive Radon measures on $Extr(UCP_N(\mathcal{M}, \Omega)).$

Theorem (M. Bischoff. S.D.V., L. Giorgetti)

 $K \cong \text{Ext}(\text{UCP}_{\mathcal{N}}(\mathcal{M}, \Omega))$ is a compact hypergroup with

- convolution: $\phi_1 * \phi_2 := \phi_1 \circ \phi_2$
- adjoint: $\phi^\sim:=\phi^\#,$ where $\phi^\#$ is the Ω -adjoint of ϕ .
- E is the Haar measure of K

Corollary (Choquet-type decomposition of E)

Let $m \in \mathcal{M}$, we have

$$
E(m) = \int_{K} \phi(m) d\omega_{E}(\phi)
$$
 (1)

where the integral is understood in the weak sense.

Theorem (M. Bischoff. S.D.V., L. Giorgetti)

Let $\mathcal{N} \subset \mathcal{M}$ be an irreducible local discrete subfactor of type III. Let $\Omega \in \mathcal{H}$ be a standard vector for $M \subset \mathcal{B}(\mathcal{H})$ such that the associated state is invariant wrt the unique normal faithful conditional expectation $E: \mathcal{M} \to \mathcal{N}$.

Then there is a compact hypergroup K which acts on M by Ω -Markov maps and

$$
\mathcal{N} = \mathcal{M}^K := \{ m \in \mathcal{M} : \phi(m) = m \text{ for all } \phi \in K \}.
$$

Representations

Proposition

There is a bijective correspondence between

 $\{\pi: \text{ Irreducible Representations of } K \,\} \longleftrightarrow \{\rho_{\pi}: \text{ Irreducible subsets of } \theta \,\}$

Representations

Proposition

There is a bijective correspondence between

 $\{\pi : \text{ Irreducible Representations of } K \}\longleftrightarrow \{\rho_{\pi} : \text{ Irreducible subsectors of } \theta \}$

Theorem (R. Vrem 79, Y. Chapovski, L. Vainerman 99 - Schur's Orthogonality Relations)

Let π be an irreducible representation of K acting on the complex Hilbert space \mathcal{H}_{π} . There is $d_{\pi} \in \mathbb{R}$ with $d_{\pi} >$ dim \mathcal{H}_{π} such that for any $v \in \mathcal{H}_{\pi}$ with $||v|| = 1$

$$
\int_K |(v, \pi(k)v)|^2 d\mu_K(k) = \frac{1}{d_\pi}.
$$

 d_{π} is called the hyperdimension of π .

Representations

Proposition

There is a bijective correspondence between

 $\{\pi : \text{ Irreducible Representations of } K \}\longleftrightarrow \{\rho_{\pi} : \text{ Irreducible subsectors of } \theta \}$

Theorem (R. Vrem 79, Y. Chapovski, L. Vainerman 99 - Schur's Orthogonality Relations)

Let π be an irreducible representation of K acting on the complex Hilbert space \mathcal{H}_{π} . There is $d_{\pi} \in \mathbb{R}$ with $d_{\pi} >$ dim \mathcal{H}_{π} such that for any $v \in \mathcal{H}_{\pi}$ with $||v|| = 1$

$$
\int_K |(v, \pi(k)v)|^2 d\mu_K(k) = \frac{1}{d_\pi}.
$$

 d_{π} is called the hyperdimension of π .

Proposition

The hyperdimension d_{π} is equal to the statistical dimension $d_{\rho_{\pi}}$.

Corollary

```
\text{Hom}(\gamma, \gamma) \cong L^{\infty}(K, d\omega_E).
```
together with

```
Theorem (M. Enock, R. Nest 96)
```
Suppose $\mathcal{N} \subset \mathcal{M}$ has depth 2, is semidiscrete, and $\text{Hom}(\gamma, \gamma)$ is commutative. Then $\exists G$ compact group acting on M with $\mathcal{N} = \mathcal{M}^G$.

we get

Corollary

Suppose $\mathcal{N} \subset \mathcal{M}$ is a discrete local subfactor with depth 2. Then $\exists G$ compact group acting on M with $\mathcal{N} = \mathcal{M}^G$.

Proposition

Let $\mathcal{N} = \mathcal{M}^G \subset \mathcal{M}$ for some compact group G. Let $H \subset G$ a closed subgroup. Then

$$
\mathcal{N} = (\mathcal{M}^H)^{G/\!\!/H} \subset \mathcal{M}^H
$$

where

$$
G/\!\!/H=\{HxH:x\in G\},
$$

$$
\delta_{HxH} * \delta_{HyH} := \int_H \delta_{HxtyH} d\omega_H(t),
$$

$$
(\delta_{HxH})^{\sim} := \delta_{Hx^{-1}H}.
$$

Examples

Example

$$
\text{Vir}_1 = SU(2)_{1}^{SO(3)} \subset SU(2)_{1}.
$$

Every discrete extension of Vir_1 is of the form

 $\mathsf{Vir}_1\subset SU(2)_1^H$

for some closed subgroup H of $SO(3)$.

Thus for any discrete extension β of Vir₁,

$$
\mathsf{Vir}_1 = \mathcal{B}^K
$$

where $K = SO(3)/\!\!/H$, with H a closed subgroup of $SO(3)$.

Example

$$
SU(2)_{10} \subset Spin(5)_1
$$

$$
\gamma = \mathrm{id} \oplus \gamma_1, \quad d_{\gamma_1} = 2 + \sqrt{3}
$$

$$
K = \{e, \phi_{\gamma_1}\}\
$$

$$
\phi_{\gamma_1} * \phi_{\gamma_1} = \frac{1}{2 + \sqrt{3}}e + \frac{1 + \sqrt{3}}{2 + \sqrt{3}}\phi_{\gamma_1}
$$

$$
\phi_{\gamma_1}^{\#} = \phi_{\gamma_1}.
$$

- • Inverse Problem: From action of compact hypergroup to discrete subnet?
- Galois type correspondence for Intermediate subnets?
- Non Local case \longleftrightarrow Compact Quantum Hypergroups?
- General case (semidiscreteness)?