Generalized Orbifolds in Conformal Field Theory: Compact Hypergroups

Simone Del Vecchio

based on joint work with Marcel Bischoff and Luca Giorgetti

Virtual LQP / LQP45 workshop

17 June 2020

Let \mathcal{A} be a conformal net and $\mathcal{B} \subset \mathcal{A}$ a conformal subnet.

Question: Is there an "algebraic object" K acting on \mathcal{A} for which $\mathcal{B} = \mathcal{A}^K$? Conversely: If K suitably acts on \mathcal{A} , is $\mathcal{B} := \mathcal{A}^K$ a conformal subnet?

Can then have statements of the type: If $\mathcal{B} \subset \mathcal{A}$ with $\mathcal{B} = \mathcal{A}^K$ then all intermediate conformal subnets \mathcal{C} ,

$$\mathcal{B} \subset \mathcal{C} \subset \mathcal{A},$$

are given by fixed points under the action of subobjects of K on A.

Compact Hypergroups

Definition

We say a compact Hausdorff space K with distinguished element $e \in K$ and continuous involution $\overline{\cdot} : K \to K, k \mapsto \overline{k}$, with $\overline{e} = e$ is a compact hypergroup, if

- The Banach space $M^b(K)$ of complex Radon measures has a convolution product \ast which is associative, bilinear, weakly continuous.
- For $x, y \in K$ the measure $\delta_x * \delta_y$ is a probability measure.
- The mapping $(x, y) \rightarrow \delta_x * \delta_y$ is continuous.

•
$$\delta_e * \delta_x = \delta_x * \delta_e = \delta_x$$
 for all $x \in K$.

- $\overline{\delta_x * \delta_y} = \delta_{\overline{y}} * \delta_{\overline{x}}$, where $\overline{\mu}(k) = \mu(\overline{k})$.
- \exists faithful probability measure $\mu_K \in M^b(K)$ such that for all $f, g \in C(K)$,

$$\int_{K} f(x * y)g(x)d\mu_{K}(x) = \int_{K} f(x)g(x * \bar{y})d\mu_{K}(x)$$

with

$$f(x * y) := \int_{K} f(k) d(\delta_x * \delta_y)(k).$$

Conformal Nets

Let \mathcal{I} be the set of nonempty, nondense, open intervals of S^1 . A conformal net on S^1 is a family $\mathcal{A} = \{\mathcal{A}(I) : I \in \mathcal{I}\}$ of von Neumann algebras, acting on an infinite-dimensional separable complex Hilbert space \mathcal{H} , satisfying the following properties:

- Isotony: $\mathcal{A}(I_1) \subset \mathcal{A}(I_2)$, if $I_1 \subset I_2, I_1, I_2 \in \mathcal{I}$.
- Locality: $\mathcal{A}(I_1) \subset \mathcal{A}(I_2)'$, if $I_1 \cap I_2 = \emptyset, I_1, I_2 \in \mathcal{I}$.
- Möbius covariance: There exists a strongly continuous unitary representation U of $\mathsf{PSL}(2,\mathbb{R})$ in \mathcal{H} such that $U(g)\mathcal{A}(I)U(g)^* = A(gI), I \in \mathcal{I}, g \in \mathsf{PSL}(2,\mathbb{R})$, where $\mathsf{PSL}(2,\mathbb{R})$ acts on S^1 by Möbius transformations.
- Positivity of the energy: The generator of rotations L_0 has nonnegative spectrum.
- Existence and uniqueness of the vacuum: There exists a unique (up to phase) U-invariant unit vector $\Omega \in \mathcal{H}$.
- Cyclicity of the vacuum: Ω is cyclic for the algebra $\mathcal{A}(S^1) := \bigcup_{I \in \mathcal{I}} \mathcal{A}(I)$.

Let \mathcal{A} be a conformal net on S^1 , $\mathcal{B} \subset \mathcal{A}$ a conformal subnet. Let $\mathcal{N} := \mathcal{B}(I)$, $\mathcal{M} := \mathcal{A}(I)$ for a fixed $I \in \mathcal{I}$ (type *III* factors).

 $\mathsf{End}(\mathcal{N})$ is the category of unital endomorphisms of \mathcal{N} with

$$\operatorname{Hom}(\rho,\sigma) := \{T \in \mathcal{N} : T\rho(n) = \sigma(n)T \text{ for all } n \in \mathcal{N}\}$$

for $\rho, \sigma \in \operatorname{End}(\mathcal{N})$, and tensor product

$$\rho\otimes\sigma:=\rho\circ\sigma,$$

 $T_1 \otimes T_2 := T_1 \rho_1(T_2) = \sigma_1(T_2)T_1.$ for $T_1 \in \operatorname{Hom}(\rho_1, \sigma_1), T_2 \in \operatorname{Hom}(\rho_2, \sigma_2), \rho_1, \rho_2, \sigma_1, \sigma_2 \in \operatorname{End}(\mathcal{N}).$

Let $\mathcal{N} := \mathcal{B}(I)$, $\mathcal{M} := \mathcal{A}(I)$.

Let $\iota:\mathcal{N}\to\mathcal{M}$ be the embedding homomorphism of $\mathcal N$ in $\mathcal M,$ then

 $\gamma:=\iota\bar\iota\in{\rm End}({\mathcal M})$ is the canonical endomorphism of ${\mathcal N}\subset{\mathcal M}$

 $\theta:=\bar\iota\iota\in\mathsf{End}(\mathcal{N})$ is the dual canonical endomorphism of $\mathcal{N}\subset\mathcal{M}$

• Any $E \in E(\mathcal{M}, \mathcal{N})$ is a Stinespring dilation of γ : $E(\cdot) = w^* \gamma(\cdot) w$ with $w \in \text{Hom}(\text{id}, \theta)$ [Longo 90].

 γ and θ may be defined by Tomita-Takesaki modular theory even if $\overline{\iota}$ does not exist as in a rigid tensor category [Longo 90].

Let $\langle\theta\rangle$ denote the rigid category generated by finite-dimensional subendomorphisms of $\theta.$

Definition (Discreteness)

If $\mathcal{N} \subset \mathcal{M}$ is an irreducible subfactor $(\mathcal{M} \cap \mathcal{N}' = \mathbb{C})$ with normal, faithful conditional expectation E, then

 $\mathcal{N} \subset \mathcal{M}$ discrete $\Leftrightarrow \theta \cong \bigoplus_i \rho_i$ with $\dim(\rho_i) < \infty$.

$$\operatorname{Hom}(\theta,\theta) \cong \bigoplus_{[\rho]} M_{n_{\rho}}(\mathbb{C})$$

Let $\rho \in \mathsf{Obj}(\langle \theta \rangle)$.

$$H_{\rho} := \operatorname{Hom}(\iota, \iota \circ \rho) = \{ \psi \in \mathcal{M} : \psi\iota(n) = \iota(\rho(n))\psi \text{ for all } n \in \mathcal{N} \}.$$

Recall $E(\cdot) = w^* \gamma(\cdot) w$ with $w \in \operatorname{Hom}(\operatorname{id}, \theta)$.

$$T_{\rho} \colon H_{\rho} \times H_{\rho} \to \operatorname{Hom}(\theta, \theta) \subset \mathcal{N}$$
$$(\psi_{1}, \psi_{2}) \mapsto \gamma(\psi_{1}^{*}) w w^{*} \gamma(\psi_{2})$$

Construction of Hypergroup - Algebra of Trigonometric Polynomials

$$\operatorname{Hom}(\theta,\theta) \cong \bigoplus_{[\rho]} M_{n_{\rho}}(\mathbb{C})$$

Recall $E(\cdot) = w^* \gamma(\cdot) w$ with $w \in \operatorname{Hom}(\operatorname{id}, \theta)$.

$$T_{\rho} \colon H_{\rho} \times H_{\rho} \to \operatorname{Hom}(\theta, \theta) \subset \mathcal{N}$$
$$(\psi_{1}, \psi_{2}) \mapsto \gamma(\psi_{1}^{*}) w w^{*} \gamma(\psi_{2})$$

Definition (Algebra of Trigonometric Polynomials)

$$\mathsf{Trig}(\mathcal{N}\subset\mathcal{M}):=\mathsf{Span}_{\mathbb{C}}\{T_{\rho}(\psi_1,\psi_2):\rho\in\mathsf{Obj}(\langle\theta\rangle),\psi_1,\psi_2\in\mathcal{H}_{\rho}\},$$

$$T_{\rho_1}(\psi_1,\psi_2) * T_{\rho_2}(\psi_3,\psi_4) := T_{\rho_1 \circ \rho_2}(\psi_1\psi_3,\psi_2\psi_4),$$

$$\bullet : \psi \in \mathcal{H}_{\rho} \to \psi^\bullet := \psi^*\iota(\bar{r}_{\rho}) \in \mathcal{H}_{\bar{\rho}},$$

$$(T_{\rho}(\psi_1,\psi_2))^\bullet := T_{\bar{\rho}}(\psi_1^\bullet,\psi_2^\bullet).$$

Theorem (M. Bischoff, S.D.V, L. Giorgetti)

 $(Trig(\mathcal{N} \subset \mathcal{M}), *, ^{\bullet})$ is a unital, associative algebra with involution. If $\mathcal{N} \subset \mathcal{M}$ is a local subfactor then $(Trig(\mathcal{N} \subset \mathcal{M}), *, ^{\bullet})$ is commutative.

Definition

A discrete, irreducible subfactor $\mathcal{N} \subset \mathcal{M}$ is local if

$$\psi_{\rho}\psi_{\sigma} = \varepsilon_{\rho,\sigma}^{\pm}\psi_{\sigma}\psi_{\rho}$$

for all $\psi_{\rho} \in H_{\rho}, \psi_{\sigma} \in H_{\sigma}, \rho, \sigma \in Obj(\langle \theta \rangle)$ with $\varepsilon_{\rho,\sigma}^{\pm}$ the DHR braiding.

Adjointable UCP maps

Let Ω be a cyclic and separating vector for \mathcal{M} .

Definition

Let $UCP_{\mathcal{N}}(\mathcal{M},\Omega)$ denote the set of normal linear maps $\phi\colon \mathcal{M}\to \mathcal{M}$ with the following properties

- **1** ϕ is unital and completely positive (UCP).
- **2** ϕ preserves the state given by Ω , i.e. $(\Omega, \phi(\cdot)\Omega) = (\Omega, \cdot \Omega)$.
- **3** ϕ is \mathcal{N} -bimodular, i.e. $\phi(n_1mn_2) = n_1\phi(m)n_2$ for every $n_1, n_2 \in \mathcal{N}$, $m \in \mathcal{M}$.

Lemma

Under our hypothesis for $\mathcal{N} \subset \mathcal{M}$, every $\phi \in UCP_{\mathcal{N}}(\mathcal{M}, \Omega)$ is Ω -adjointable, i.e. $\exists \phi^{\#} \in UCP_{\mathcal{N}}(\mathcal{M}, \Omega)$ such that

$$(\phi^{\#}(m_1)\Omega, m_2\Omega) = (m_1\Omega, \phi(m_2)\Omega)$$

for every $m_1, m_2 \in \mathcal{M}$.

Duality Pairing

There is a duality pairing between $\mathsf{UCP}_\mathcal{N}(\mathcal{M},\Omega)$ and $(\mathsf{Trig}(\mathcal{N}\subset\mathcal{M}),*,^{\bullet})$

$$\langle \cdot, \cdot \rangle \colon \mathsf{UCP}_{\mathcal{N}}(\mathcal{M}, \Omega) \times \mathsf{Trig}(\mathcal{N} \subset \mathcal{M}) \to \mathbb{C}$$
$$\langle \phi, T_{\rho}(\psi_1, \psi_2) \rangle := \psi_1^* \phi(\psi_2) \in \mathrm{Hom}(\iota, \iota) = \mathbb{C} \operatorname{id}$$

Denote by $\omega_{\phi} := \langle \phi, \cdot \rangle$. ω_{ϕ} is a positive linear functional.

Duality Pairing

There is a duality pairing between $UCP_{\mathcal{N}}(\mathcal{M}, \Omega)$ and $(Trig(\mathcal{N} \subset \mathcal{M}), *, \bullet)$

$$\langle \cdot, \cdot \rangle \colon \mathsf{UCP}_{\mathcal{N}}(\mathcal{M}, \Omega) \times \mathsf{Trig}(\mathcal{N} \subset \mathcal{M}) \to \mathbb{C}$$

$$\langle \phi, T_{\rho}(\psi_1, \psi_2) \rangle := \psi_1^* \phi(\psi_2) \in \operatorname{Hom}(\iota, \iota) = \mathbb{C} \operatorname{id}$$

Denote by $\omega_{\phi} := \langle \phi, \cdot \rangle$. ω_{ϕ} is a positive linear functional.

Consider ω_E , with E conditional expectation of $\mathcal{N} \subset \mathcal{M}$. Let λ_E be the GNS representation of $(\operatorname{Trig}(\mathcal{N} \subset \mathcal{M}), *, \bullet)$ wrt ω_E .

Lemma

 λ_E is a faithful representation of $(Trig(\mathcal{N} \subset \mathcal{M}), *, \bullet)$ by bounded operators.

Reduced C^* -algebra of $\mathcal{N} \subset \mathcal{M}$

Let λ_E be the GNS representation of $(\operatorname{Trig}(\mathcal{N} \subset \mathcal{M}), *, \bullet)$ wrt ω_E .

Denote by $C_E^*(\mathcal{N} \subset \mathcal{M})$ the closure of the image of λ_E .

Remark

 $C_E^*(\mathcal{N} \subset \mathcal{M})$ is a commutative and separable C^* -algebra and thus

$$C_E^*(\mathcal{N} \subset \mathcal{M}) \cong C(K)$$

for some compact, metrizable topological space K.

Reduced C^* -algebra of $\mathcal{N} \subset \mathcal{M}$

Let λ_E be the GNS representation of $(\operatorname{Trig}(\mathcal{N} \subset \mathcal{M}), *, \bullet)$ wrt ω_E .

Denote by $C_E^*(\mathcal{N} \subset \mathcal{M})$ the closure of the image of λ_E .

Remark

 $C_E^*(\mathcal{N} \subset \mathcal{M})$ is a commutative and separable C^* -algebra and thus

$$C_E^*(\mathcal{N} \subset \mathcal{M}) \cong C(K)$$

for some compact, metrizable topological space K.

Theorem

The duality map $\phi \to \omega_{\phi}$ lifts to a map between $UCP_{\mathcal{N}}(\mathcal{M}, \Omega)$ and states on $C_E^*(\mathcal{N} \subset \mathcal{M})$.

```
C_E^*(\mathcal{N} \subset \mathcal{M}) \cong C(K)
```

for some compact, metrizable topological space K.

```
Theorem (M. Bischoff. S.D.V., L. Giorgetti)
The duality map
```

 $\phi \mapsto \omega_{\phi}$

is a homeomorphism between

- $UCP_{\mathcal{N}}(\mathcal{M}, \Omega)$
- the set of states ω on $C_E^*(\mathcal{N} \subset \mathcal{M})$.

In particular it restricts to a homeomorphism between

- $Extr(UCP_{\mathcal{N}}(\mathcal{M},\Omega))$ (Extreme points of $UCP_{\mathcal{N}}(\mathcal{M},\Omega)$)
- K.

Corollary

$$UCP_{\mathcal{N}}(\mathcal{M},\Omega) \cong M^b_+(Extr(UCP_{\mathcal{N}}(\mathcal{M},\Omega)))$$

where $M^b_+(\text{Extr}(\text{UCP}_{\mathcal{N}}(\mathcal{M},\Omega)))$ denotes the positive Radon measures on $\text{Extr}(\text{UCP}_{\mathcal{N}}(\mathcal{M},\Omega))$.

Theorem (M. Bischoff. S.D.V., L. Giorgetti)

 $K \cong Extr(UCP_{\mathcal{N}}(\mathcal{M}, \Omega))$ is a compact hypergroup with

- convolution: $\phi_1 * \phi_2 := \phi_1 \circ \phi_2$
- adjoint: $\phi^{\sim} := \phi^{\#}$, where $\phi^{\#}$ is the Ω -adjoint of ϕ .
- E is the Haar measure of K.

Corollary (Choquet-type decomposition of E)

Let $m \in \mathcal{M}$, we have

$$E(m) = \int_{K} \phi(m) d\omega_{E}(\phi)$$
(1)

where the integral is understood in the weak sense.

Theorem (M. Bischoff. S.D.V., L. Giorgetti)

Let $\mathcal{N} \subset \mathcal{M}$ be an irreducible local discrete subfactor of type III. Let $\Omega \in \mathcal{H}$ be a standard vector for $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ such that the associated state is invariant wrt the unique normal faithful conditional expectation $E : \mathcal{M} \to \mathcal{N}$.

Then there is a compact hypergroup K which acts on $\mathcal M$ by Ω -Markov maps and

$$\mathcal{N} = \mathcal{M}^K := \{ m \in \mathcal{M} : \phi(m) = m \text{ for all } \phi \in K \}.$$

Representations

Proposition

There is a bijective correspondence between

 $\{\pi : \text{ Irreducible Representations of } K \} \longleftrightarrow \{\rho_{\pi} : \text{ Irreducible subsectors of } \theta \}$

Representations

Proposition

There is a bijective correspondence between

 $\{\pi : \text{ Irreducible Representations of } K \} \longleftrightarrow \{\rho_{\pi} : \text{ Irreducible subsectors of } \theta \}$

Theorem (R. Vrem 79, Y. Chapovski, L. Vainerman 99 - Schur's Orthogonality Relations)

Let π be an irreducible representation of K acting on the complex Hilbert space \mathcal{H}_{π} . There is $d_{\pi} \in \mathbb{R}$ with $d_{\pi} \geq \dim \mathcal{H}_{\pi}$ such that for any $v \in \mathcal{H}_{\pi}$ with ||v|| = 1

$$\int_K |(v,\pi(k)v)|^2 d\mu_K(k) = \frac{1}{d_\pi}.$$

 d_{π} is called the hyperdimension of $\pi.$

Representations

Proposition

There is a bijective correspondence between

 $\{\pi : \text{ Irreducible Representations of } K \} \longleftrightarrow \{\rho_{\pi} : \text{ Irreducible subsectors of } \theta \}$

Theorem (R. Vrem 79, Y. Chapovski, L. Vainerman 99 - Schur's Orthogonality Relations)

Let π be an irreducible representation of K acting on the complex Hilbert space \mathcal{H}_{π} . There is $d_{\pi} \in \mathbb{R}$ with $d_{\pi} \geq \dim \mathcal{H}_{\pi}$ such that for any $v \in \mathcal{H}_{\pi}$ with ||v|| = 1

$$\int_{K} |(v, \pi(k)v)|^2 d\mu_K(k) = \frac{1}{d_{\pi}}.$$

 d_{π} is called the hyperdimension of π .

Proposition

The hyperdimension d_{π} is equal to the statistical dimension $d_{\rho_{\pi}}$.

Corollary

```
\operatorname{Hom}(\gamma,\gamma) \cong L^{\infty}(K, d\omega_E).
```

together with

Theorem (M. Enock, R. Nest 96)

Suppose $\mathcal{N} \subset \mathcal{M}$ has depth 2, is semidiscrete, and $\operatorname{Hom}(\gamma, \gamma)$ is commutative. Then $\exists G$ compact group acting on \mathcal{M} with $\mathcal{N} = \mathcal{M}^G$.

we get

Corollary

Suppose $\mathcal{N} \subset \mathcal{M}$ is a discrete local subfactor with depth 2. Then $\exists G$ compact group acting on \mathcal{M} with $\mathcal{N} = \mathcal{M}^G$.

Proposition

Let $\mathcal{N} = \mathcal{M}^G \subset \mathcal{M}$ for some compact group G. Let $H \subset G$ a closed subgroup. Then

$$\mathcal{N} = (\mathcal{M}^H)^{G/\!\!/H} \subset \mathcal{M}^H$$

where

$$G/\!\!/H=\{HxH:x\in G\},$$

$$\delta_{HxH} * \delta_{HyH} := \int_{H} \delta_{HxtyH} d\omega_{H}(t),$$
$$(\delta_{HxH})^{\sim} := \delta_{Hx^{-1}H}.$$

Simone Del Vecchio (Univ. Leipzig) Generalized Orbifolds in Conformal Field Theory: Compact Hypergroups

Examples

Example

$$\operatorname{Vir}_1 = SU(2)_1^{SO(3)} \subset SU(2)_1.$$

Every discrete extension of Vir_1 is of the form

 $\operatorname{Vir}_1 \subset SU(2)_1^H$

for some closed subgroup H of SO(3).

Thus for any discrete extension \mathcal{B} of Vir₁,

$$\mathsf{Vir}_1 = \mathcal{B}^K$$

where $K = SO(3) /\!\!/ H$, with H a closed subgroup of SO(3).

Examples

Example

$$SU(2)_{10} \subset \mathsf{Spin}(5)_1$$
$$\gamma = \mathrm{id} \oplus \gamma_1, \quad d_{\gamma_1} = 2 + \sqrt{3}$$
$$K = \{e, \phi_{\gamma_1}\}$$
$$\phi_{\gamma_1} * \phi_{\gamma_1} = \frac{1}{2 + \sqrt{3}}e + \frac{1 + \sqrt{3}}{2 + \sqrt{3}}\phi_{\gamma_1}$$
$$\phi_{\gamma_1}^\# = \phi_{\gamma_1}.$$

- Inverse Problem: From action of compact hypergroup to discrete subnet?
- Galois type correspondence for Intermediate subnets?
- Non Local case ↔ Compact Quantum Hypergroups?
- General case (semidiscreteness)?