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Starting definitions

Let J be the set of all intervals (open, connected, non-empty and non-dense subsets) of
the circle S1. An irreducible graded-local conformal net is a family A := (A(I ))I∈J of
von Neumann algebras on a separable Hilbert space H, s.t.:

Isotony. If I1 ⊆ I2 intervals, then A(I1) ⊆ A(I2).

Möbius covariance. U : Möb(S1)(∞) → U(H) a strongly continuous unitary
representation of Möb(S1)(∞) on H s.t.
U(γ)A(I )U(γ)−1 = A(γ̇I ) ∀γ ∈ Möb(S1)(∞) ∀I ∈ J .

Positivity of the energy. The generator H of the rotation subgroup of U is a positive
operator on H, called conformal Hamiltonian.

Vacuum. A U-invariant vector Ω ∈ H, which is cyclic for the von Neumann algebra∨
I∈J A(I ).

Graded-locality. A self-adjoint Γ ∈ U(H) s.t. ΓΩ = Ω and
ΓA(I )Γ = A(I ), A(I ′) ⊆ ZA(I )′Z∗ for all I ∈ J with Z := 1H−iΓ

1−i
.

Diffeomorphism covariance. A strongly continuous projective unitary extension of U to
Diff+(S1)(∞) s.t.:
U(γ)A(I )U(γ)−1 = A(γ̇I ), ∀γ ∈ Diff+(S1)(∞);
U(γ)AU(γ)−1 = A, ∀A ∈ A(I ′), ∀γ ∈ Diff(I ), ∀I ∈ J .

Irreducibility. Ω is the unique vacuum vector up to a phase.
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A vertex operator superalgebra is a quadruple (V ,Ω,Y , ν):

C-vector superspace. C-vector space V with an involution ΓV s.t.:

V0 := {a ∈ V | ΓV a = a}, V1 := {a ∈ V | ΓV a = −a}, V = V0 ⊕ V1 , 0, 1 ∈ Z/2Z .

a ∈ V0 is an even element with parity p(a) = 0.
b ∈ V1 is an odd element with parity p(b) = 1.

Vacuum vector. Ω ∈ V0.

State-Field correspondence. A C-linear map Y : V → End(V )[[z , z−1]] denoted by the
formal series Y (a, z) :=

∑
n∈Z a(n)z

−n−1 with a ∈ V s.t.:

Parity preserving field. For every a, b ∈ V , a(n)b ∈ Vp(a)+p(b) for all n ∈ Z and
a(M)b = 0 for M � 0;

Vacuum. Y (Ω, z) = 1V and a(−1)Ω = a for all a ∈ V ;

Locality. For every a, b ∈ V , as formal distribution

(z − w)N [Y (a, z),Y (b,w)] = 0 N � 0 (all commutators are graded) .
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Conformal vector. ν ∈ V0, Y (ν, z) =
∑

n∈Z Lnz
−n−2 s.t.:

Virasoro algebra cr. [Lm, Ln] = (m − n)Lm+n + c (m3−m)
12

δm,−n1 with central charge
c ∈ C;

Translation covariance. L−1Ω = 0 and [L−1,Y (a, z)] = d
dz
Y (a, z) for all a ∈ V ;

V0 =
⊕

n∈Z Vn, V1 =
⊕

n∈Z− 1
2
Vn with Vn := Ker(L0 − n1V ), dimVn < +∞,

Vn = 0 for n� 0.
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Nomenclature and notation

Y (a, z) for a ∈ V is called vertex operator.

If a ∈ Vn for some n ∈ 1
2
Z, then a is called homogeneous of conformal weight

da := n. We write

Y (a, z) =
∑

n∈Z−da

anz
−n−da , an := a(n+da−1) .

An ideal J of a vertex operator superalgebra V is an L−1-invariant vector subspace
such that a(n)J ⊆J for all a ∈ V and all n ∈ Z.
V is said simple if the only ideal are {0} and V itself.
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An (anti-)linear automorphism φ on V is an (anti-)linear vector space automorphism
s.t. φ(Ω) = Ω, φ(ν) = ν and φ(a(n)b) = (φ(a))(n)φ(b) for all a, b ∈ V and all n ∈ Z.

A unitary VOSA is a VOSA V equipped with:

a scalar product (·|·), that is, a positive-definite hermitian form (linear in the second
variable), which is normalized, i.e., (Ω|Ω) = 1;

an anti-linear involution θ, called the PCT operator;

such that the following invariant property holds

(Y (θ(a), z)b|c) = (b|Y (ezL1 (−1)2L2
0+L0z−2L0a, z−1)c) ∀a, b, c ∈ V
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Constructing graded-local conformal nets

Definition

Given a unitary VOSA V , define the norm ‖·‖ := (·|·)
1
2 . Then, the separable Hilbert

space H for our graded-local conformal net theory is obtained as the norm completion of
V by ‖·‖.

To construct the local von Neumann algebras:

the idea is to define some operator-valued distributions from the circle S1 to H,
using vertex operators Y (a, z).

First, we need a control on the operator norm of coefficients an:

Definition

A unitary VOSA V is said energy-bounded if for every a ∈ V there exists k, s,M > 0
such that

‖anb‖ ≤ M(|n|+ 1)s
∥∥∥(1H + L0)kb

∥∥∥ ∀n ∈ 1

2
Z ∀b ∈ V .



Constructing graded-local conformal nets

Test functions: C∞(S1) and C∞χ (S1) := χC∞(S1) where χ(x) := e i
x
2 with x ∈ (−π, π].

V energy-bounded unitary VOSA. Define the following operators on V : a ∈ V0, b ∈ V1,
f ∈ C∞(S1), g ∈ C∞χ (S1), then

Y0(a, f )c :=
∑
n∈Z

f̂nanc , Y0(b, g)c :=
∑

n∈Z− 1
2

ĝnbnc ∀c ∈ V .

Invariance property ⇒ an, bn are closable on H.

Energy bounds ⇒ Y0(a, f ) and Y0(b, g) are densely defined operator on H.

Definition

Smeared vertex operators: Y (a, f ) and Y (b, g) are the closure of Y0(a, f ) and Y0(b, g)
on H.

Energy bounds (+ some standard results) ⇒ for all c ∈ H∞,

C∞(S1) 3 f 7→ Y (a, f )c ∈ H∞ and C∞χ (S1) 3 g 7→ Y (b, g)c ∈ H∞

are operator-valued distributions (H∞ is the common invariant core of smooth
vectors for 1H + L0).
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Definition of the net

Let (V ,Ω,Y , ν) be a simple energy-bounded VOSA.

For all I ∈ J , define the von Neumann algebras

A(V ,(·|·))(I ) := W ∗
({

Y (a, f ), Y (b, g) | a∈V0 , f∈C
∞(S1) , suppf⊂I

b∈V1 , g∈C
∞
χ (S1) , suppg⊂I

})
.

We have a strongly-continuous projective unitary representation
U : Diff+(S1)(∞) → U(H) induced by the conformal vector ν, which factors through
Diff+(S1)(2):

U(exp(2)(tf ))AU(exp(2)(tf )) = e itY (ν,f )Ae−itY (ν,f )

where exp(2)(tf ) is the lift to Diff+(S1)(2) of the exponential map on the real vector
field f d

dx
, f ∈ C∞(S1,R).



Constructing graded-local conformal nets

Which properties of the net can be proved:

V : simple energy-bounded unitary VOSA;
(A(V ,(·|·)),U): associated family of von Neumann algebras with representation of

Diff+(S1)(∞);

Isotony 2�;

Möbius covariance 2�;

Positivity of the energy: L0 is the conformal Hamiltonian. 2�;

Ω ∈ V is the vacuum 2�;

Irreducibility 2�;

Graded-locality 4;

Diffeomorphism covariance 2� (it is possible to prove it using or without using the
graded-locality of the net).
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Γ is the extension of ΓV to H;
Z := 1H−iΓ

1−i
;

Definition

Let V be a unitary VOSA. V is said strongly graded-local if it is energy-bounded and
A(V ,(·|·))(I

′) ⊆ ZA(V ,(·|·))(I )
′Z∗ for all I ∈ J .

Theorem

Let V be a simple strongly graded-local unitary VOSA, then A(V ,(·|·)) is an irreducible
graded-local conformal net. Moreover, if (·|·)′ determines another unitary structure on V ,
then A(V ,(·|·)) is unitarily isomorphic to A(V ,(·|·)′).

Therefore, we indicate the graded-local conformal net so obtained from V with simply
AV .
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Further correspondence results

Unitary subalgebras and covariant subnets

V : simple strongly graded-local unitary VOSA.

Theorem

Aut(·|·)(V ) = Aut(AV ). In particular, if Aut(V ) is compact, then Aut(V ) = Aut(AV ).

Theorem

The map W 7→ AW realises a one-to-one correspondence between unitary subalgebras of
V and covariant subnets of AV .
In particular, such a map “preserves” the coset construction: AW c = Ac

W .
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Strong graded-locality by generators

F a subset of a simple energy-bounded unitary VOSA V . For all I ∈ J , define

AF(I ) := W ∗
({

Y (a, f ), Y (b, g) | a∈V0∩F , f∈C
∞(S1) , suppf⊂I

b∈V1∩F , g∈C
∞
χ (S1) , suppg⊂I

})
.

Theorem

Assume that F contains only quasi-primary vectors (L1F = {0}) and that it generates V .
If there exists an I ∈ J such that AF(I ′) ⊆ ZAF(I )′Z∗, then V is strongly graded-local
and AF(I ) = AV (I ) for all I ∈ J .

Corollary

V 1 and V 2 simple strongly graded-local unitary VOSA. Then, AV 1⊗̂V 2 = AV 1⊗̂AV 2 .

Corollary

Let V be a simple unitary VOSA generated by V 1
2
∪ V1 ∪ F, where F ⊆ V2 is a family of

quasi-primary θ-invariant Virasoro vectors. Then V is energy-bounded and strongly
graded-local.
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Classical examples

We can obtain the following classical examples of graded-local conformal nets through
the procedure just described:

Real free fermion net: F := AF with F the free fermion VOSA.

Charged free fermion net: F2 := F⊗̂F = AF⊗̂F .

d-fermion net: Fd = AFd .

Lie superalgebra net: Agk ⊗ Fd with Agk := AV k (g) the net associated to level k
Lie algebra g.

Rank-one lattice net: AN := AVLN
with VLN the simple unitary VOSA associated

to an even/odd one-dimensional lattice LN =
√
NJZ.

N = 1, 2 super-Virasoro net: it allows us to talk about “unitary superconformal
structures” on a VOSA.

Theorem

V a simple strongly graded-local unitary VOSA. Then V is superconformal iff AV is.
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