About the correspondence between vertex operator superalgebras and graded-local conformal nets

> Tiziano Gaudio joint work with S. Carpi and R. Hillier (in preparation)

First Virtual LQP Workshop

Introduction

Starting definitions

Let \mathcal{J} be the set of all intervals (open, connected, non-empty and non-dense subsets) of the circle S^1 . An irreducible graded-local conformal net is a family $\mathcal{A} := (\mathcal{A}(I))_{I \in \mathcal{J}}$ of von Neumann algebras on a separable Hilbert space \mathcal{H} , s.t.:

Isotony. If $I_1 \subseteq I_2$ intervals, then $\mathcal{A}(I_1) \subseteq \mathcal{A}(I_2)$.

 $\begin{array}{l} \mbox{M\"obius covariance. } U:\mbox{M\"ob}(S^1)^{(\infty)} \to \mathbb{U}(\mathcal{H}) \mbox{ a strongly continuous unitary} \\ \mbox{representation of } \mbox{M\"ob}(S^1)^{(\infty)} \mbox{ on } \mathcal{H} \mbox{ s.t.} \\ U(\gamma)\mathcal{A}(I)U(\gamma)^{-1} = \mathcal{A}(\dot{\gamma}I) \quad \forall \gamma \in \mbox{M\"ob}(S^1)^{(\infty)} \mbox{ } \forall I \in \mathcal{J}. \end{array}$

Positivity of the energy. The generator H of the rotation subgroup of U is a positive operator on \mathcal{H} , called *conformal Hamiltonian*.

Vacuum. A *U*-invariant vector $\Omega \in \mathcal{H}$, which is cyclic for the von Neumann algebra $\bigvee_{I \in \mathcal{J}} \mathcal{A}(I)$.

Graded-locality. A self-adjoint $\Gamma \in \mathbb{U}(\mathcal{H})$ s.t. $\Gamma\Omega = \Omega$ and $\Gamma\mathcal{A}(I)\Gamma = \mathcal{A}(I)$, $\mathcal{A}(I') \subseteq Z\mathcal{A}(I)'Z^*$ for all $I \in \mathcal{J}$ with $Z := \frac{1_{\mathcal{H}} - i\Gamma}{1 - i}$.

Diffeomorphism covariance. A strongly continuous projective unitary extension of U to $\operatorname{Diff}^+(S^1)^{(\infty)}$ s.t.: $U(\gamma)\mathcal{A}(I)U(\gamma)^{-1} = \mathcal{A}(\dot{\gamma}I), \quad \forall \gamma \in \operatorname{Diff}^+(S^1)^{(\infty)};$ $U(\gamma)\mathcal{A}U(\gamma)^{-1} = \mathcal{A}, \quad \forall \mathcal{A} \in \mathcal{A}(I'), \forall \gamma \in \operatorname{Diff}(I), \forall I \in \mathcal{J}.$

Irreducibility. Ω is the unique vacuum vector up to a phase.

A vertex operator superalgebra is a quadruple (V, Ω, Y, ν) :

 \mathbb{C} -vector superspace. \mathbb{C} -vector space V with an involution Γ_V s.t.:

 $V_{\overline{0}} := \{ a \in V \mid \Gamma_{V} a = a \}, \ V_{\overline{1}} := \{ a \in V \mid \Gamma_{V} a = -a \}, \ V = V_{\overline{0}} \oplus V_{\overline{1}}, \ \overline{0}, \overline{1} \in \mathbb{Z}/2\mathbb{Z}.$

 $a \in V_{\overline{0}}$ is an **even** element with **parity** $p(a) = \overline{0}$. $b \in V_{\overline{1}}$ is an **odd** element with **parity** $p(b) = \overline{1}$.

Vacuum vector. $\Omega \in V_{\overline{0}}$.

State-Field correspondence. A \mathbb{C} -linear map $Y : V \to \text{End}(V)[[z, z^{-1}]]$ denoted by the formal series $Y(a, z) := \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$ with $a \in V$ s.t.:

- Parity preserving field. For every $a, b \in V$, $a_{(n)}b \in V_{p(a)+p(b)}$ for all $n \in \mathbb{Z}$ and $a_{(M)}b = 0$ for $M \gg 0$;
- Vacuum. $Y(\Omega, z) = \mathbb{1}_V$ and $a_{(-1)}\Omega = a$ for all $a \in V$;
- Locality. For every $a, b \in V$, as formal distribution

 $(z-w)^N[Y(a,z),Y(b,w)]=0$ $N\gg 0$ (all commutators are graded).

Conformal vector. $\nu \in V_{\overline{0}}$, $Y(\nu, z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$ s.t.:

- Virasoro algebra cr. $[L_m, L_n] = (m n)L_{m+n} + c \frac{(m^3 m)}{12} \delta_{m, -n} 1$ with central charge $c \in \mathbb{C}$;
- Translation covariance. $L_{-1}\Omega = 0$ and $[L_{-1}, Y(a, z)] = \frac{d}{dz}Y(a, z)$ for all $a \in V$;
- $V_{\overline{0}} = \bigoplus_{n \in \mathbb{Z}} V_n$, $V_{\overline{1}} = \bigoplus_{n \in \mathbb{Z} \frac{1}{2}} V_n$ with $V_n := \operatorname{Ker}(L_0 n\mathbb{1}_V)$, dim $V_n < +\infty$, $V_n = 0$ for $n \ll 0$.

Nomenclature and notation

- Y(a, z) for $a \in V$ is called **vertex operator**.
- If $a \in V_n$ for some $n \in \frac{1}{2}\mathbb{Z}$, then a is called homogeneous of conformal weight $d_a := n$. We write

$$Y(a,z) = \sum_{n \in \mathbb{Z}-d_a} a_n z^{-n-d_a}, \qquad a_n := a_{(n+d_a-1)}.$$

An ideal *J* of a vertex operator superalgebra V is an L₋₁-invariant vector subspace such that a_(n) *J* ⊆ *J* for all a ∈ V and all n ∈ Z.
 V is said simple if the only ideal are {0} and V itself.

An (anti-)linear automorphism ϕ on V is an (anti-)linear vector space automorphism s.t. $\phi(\Omega) = \Omega$, $\phi(\nu) = \nu$ and $\phi(a_{(n)}b) = (\phi(a))_{(n)}\phi(b)$ for all $a, b \in V$ and all $n \in \mathbb{Z}$.

A unitary VOSA is a VOSA V equipped with:

- a scalar product (·|·), that is, a positive-definite hermitian form (linear in the second variable), which is **normalized**, i.e., $(\Omega|\Omega) = 1$;
- an anti-linear involution θ , called the **PCT operator**;

such that the following invariant property holds

$$(Y(\theta(a),z)b|c) = (b|Y(e^{zL_1}(-1)^{2L_0^2+L_0}z^{-2L_0}a,z^{-1})c) \quad \forall a,b,c \in V$$

Constructing graded-local conformal nets

Definition

Given a unitary VOSA V, define the norm $\|\cdot\| := (\cdot|\cdot)^{\frac{1}{2}}$. Then, the separable Hilbert space \mathcal{H} for our graded-local conformal net theory is obtained as the norm completion of V by $\|\cdot\|$.

To construct the local von Neumann algebras:

• the idea is to define some operator-valued distributions from the circle S^1 to \mathcal{H} , using vertex operators Y(a, z).

First, we need a control on the operator norm of coefficients a_n :

Definition

A unitary VOSA V is said energy-bounded if for every $a \in V$ there exists k, s, M > 0 such that

$$\|a_n b\| \leq M(|n|+1)^s \left\| (1_{\mathcal{H}} + L_0)^k b \right\| \quad \forall n \in \frac{1}{2} \mathbb{Z} \ \forall b \in V$$

Test functions: $C^{\infty}(S^1)$ and $C^{\infty}_{\chi}(S^1) := \chi C^{\infty}(S^1)$ where $\chi(x) := e^{i\frac{\chi}{2}}$ with $x \in (-\pi, \pi]$. V energy-bounded unitary VOSA. Define the following operators on V: $a \in V_{\overline{0}}$, $b \in V_{\overline{1}}$, $f \in C^{\infty}(S^1)$, $g \in C^{\infty}_{\chi}(S^1)$, then

$$Y_0(a,f)c := \sum_{n \in \mathbb{Z}} \widehat{f}_n a_n c, \qquad Y_0(b,g)c := \sum_{n \in \mathbb{Z} - rac{1}{2}} \widehat{g}_n b_n c \quad orall c \in V.$$

- Invariance property $\Rightarrow a_n, b_n$ are closable on \mathcal{H} .
- Energy bounds $\Rightarrow Y_0(a, f)$ and $Y_0(b, g)$ are densely defined operator on \mathcal{H} .

Definition

Smeared vertex operators: Y(a, f) and Y(b, g) are the closure of $Y_0(a, f)$ and $Y_0(b, g)$ on \mathcal{H} .

• Energy bounds (+ some standard results) \Rightarrow for all $c \in \mathcal{H}^{\infty}$,

$$C^\infty(S^1)
i f \mapsto Y(a,f)c \in \mathcal{H}^\infty$$
 and $C^\infty_\chi(S^1)
i g \mapsto Y(b,g)c \in \mathcal{H}^\infty$

are operator-valued distributions (\mathcal{H}^{∞} is the common invariant core of smooth vectors for $1_{\mathcal{H}} + L_0$).

Definition of the net

Let (V, Ω, Y, ν) be a simple energy-bounded VOSA.

• For all $I \in \mathcal{J}$, define the von Neumann algebras

$$\mathcal{A}_{(V,(\cdot|\cdot))}(I) := W^*\left(\left\{Y(a,f), Y(b,g) \mid \frac{a \in V_{\overline{0}}, f \in C^{\infty}(S^1), \operatorname{supp} f \subset I}{b \in V_{\overline{1}}, g \in C^{\infty}_{\chi}(S^1), \operatorname{supp} g \subset I}\right\}\right)$$

• We have a strongly-continuous projective unitary representation $U : \text{Diff}^+(S^1)^{(\infty)} \to \mathbb{U}(\mathcal{H})$ induced by the conformal vector ν , which factors through $\text{Diff}^+(S^1)^{(2)}:$ $H(\mu, f) := H(\mu, f)$

$$U(\exp^{(2)}(tf))AU(\exp^{(2)}(tf)) = e^{itY(\nu,f)}Ae^{-itY(\nu,f)}$$

where $\exp^{(2)}(tf)$ is the lift to $\operatorname{Diff}^+(S^1)^{(2)}$ of the exponential map on the real vector field $f \frac{\mathrm{d}}{\mathrm{d}x}$, $f \in C^{\infty}(S^1, \mathbb{R})$.

Which properties of the net can be proved:

V: simple energy-bounded unitary VOSA;

 $(\mathcal{A}_{(V,(\cdot|\cdot))}, U)$: associated family of von Neumann algebras with representation of $\mathrm{Diff}^+(S^1)^{(\infty)}$;

- Isotony ∅;
- Möbius covariance ∅;
- Positivity of the energy: L_0 is the conformal Hamiltonian. eqno(2);
- $\Omega \in V$ is the vacuum arnothing;
- Irreducibility ∅;
- Graded-locality ⊠;
- Diffeomorphism covariance \square (it is possible to prove it using or without using the graded-locality of the net).

Γ is the extension of Γ_V to \mathcal{H} ; $Z := \frac{1_{\mathcal{H}} - i\Gamma}{1 - i};$

Definition

Let V be a unitary VOSA. V is said strongly graded-local if it is energy-bounded and $\mathcal{A}_{(V,(\cdot|\cdot))}(I') \subseteq Z\mathcal{A}_{(V,(\cdot|\cdot))}(I)'Z^*$ for all $I \in \mathcal{J}$.

Theorem

Let V be a simple strongly graded-local unitary VOSA, then $\mathcal{A}_{(V,(\cdot|\cdot))}$ is an irreducible graded-local conformal net. Moreover, if $(\cdot|\cdot)'$ determines another unitary structure on V, then $\mathcal{A}_{(V,(\cdot|\cdot))}$ is unitarily isomorphic to $\mathcal{A}_{(V,(\cdot|\cdot)')}$.

Therefore, we indicate the graded-local conformal net so obtained from V with simply \mathcal{A}_V .

Further correspondence results

Unitary subalgebras and covariant subnets

V: simple strongly graded-local unitary VOSA.

Theorem

 $\operatorname{Aut}_{(\cdot|\cdot)}(V) = \operatorname{Aut}(\mathcal{A}_V)$. In particular, if $\operatorname{Aut}(V)$ is compact, then $\operatorname{Aut}(V) = \operatorname{Aut}(\mathcal{A}_V)$.

Theorem

The map $W \mapsto \mathcal{A}_W$ realises a one-to-one correspondence between unitary subalgebras of V and covariant subnets of \mathcal{A}_V .

In particular, such a map "preserves" the coset construction: $\mathcal{A}_{W^c} = \mathcal{A}_W^c$.

Strong graded-locality by generators

 \mathfrak{F} a subset of a simple energy-bounded unitary VOSA V. For all $\mathit{I}\in\mathcal{J},$ define

$$\mathcal{A}_{\mathfrak{F}}(I) := W^* \left(\left\{ Y(a, f), Y(b, g) \mid \frac{a \in V_{\overline{0}} \cap \mathfrak{F}, f \in C^{\infty}(S^1), \operatorname{supp} f \subset I}{b \in V_{\overline{1}} \cap \mathfrak{F}, g \in C_{\chi}^{\infty}(S^1), \operatorname{supp} g \subset I} \right\} \right)$$

Theorem

Assume that \mathfrak{F} contains only quasi-primary vectors $(L_1\mathfrak{F} = \{0\})$ and that it generates V. If there exists an $I \in \mathcal{J}$ such that $\mathcal{A}_{\mathfrak{F}}(I') \subseteq Z\mathcal{A}_{\mathfrak{F}}(I)'Z^*$, then V is strongly graded-local and $\mathcal{A}_{\mathfrak{F}}(I) = \mathcal{A}_V(I)$ for all $I \in \mathcal{J}$.

Corollary

 V^1 and V^2 simple strongly graded-local unitary VOSA. Then, $\mathcal{A}_{V^1 \hat{\otimes} V^2} = \mathcal{A}_{V^1} \hat{\otimes} \mathcal{A}_{V^2}$.

Corollary

Let V be a simple unitary VOSA generated by $V_{\frac{1}{2}} \cup V_1 \cup \mathfrak{F}$, where $\mathfrak{F} \subseteq V_2$ is a family of quasi-primary θ -invariant Virasoro vectors. Then V is energy-bounded and strongly graded-local.

Classical examples

We can obtain the following classical examples of graded-local conformal nets through the procedure just described:

- Real free fermion net: $\mathfrak{F} := \mathcal{A}_{\mathfrak{F}}$ with \mathfrak{F} the free fermion VOSA.
- Charged free fermion net: $\mathfrak{F}^2 := \mathfrak{F} \hat{\otimes} \mathfrak{F} = \mathcal{A}_{F \hat{\otimes} F}$.
- *d*-fermion net: $\mathfrak{F}^d = \mathcal{A}_{F^d}$.
- Lie superalgebra net: A_{gk} ⊗ 𝔅^d with A_{gk} := A_{V^k(𝔅)} the net associated to level k Lie algebra 𝔅.
- Rank-one lattice net: $A_N := A_{V_{L_N}}$ with V_{L_N} the simple unitary VOSA associated to an even/odd one-dimensional lattice $L_N = \sqrt{N} J\mathbb{Z}$.
- *N* = 1,2 super-Virasoro net: it allows us to talk about "unitary superconformal structures" on a VOSA.

Theorem

V a simple strongly graded-local unitary VOSA. Then V is superconformal iff A_V is.

Reference

CKLW2018: S. Carpi, Y. Kawahigashi, R. Longo and M. Weiner. From Vertex Operator Algebras to Conformal Nets and Back. *Mem. Amer. Math. Soc.* **254** (1213) (2018), vi+85.

Thanks for your attention!