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A gap in the literature

Measurement theory in quantum mechanics has a long and controversial history.

I Simple rules are taught to students
I Measurement chain analysed in quantum measurement theory

Much less is said in quantum field theory

I Lecture courses and texts are silent
I QMT rarely discussed for QFT; still less in curved spacetimes.
I Algebraic QFT is founded on the idea of local observables,

but little discussion of how they are actually measured.
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In this talk...

I Analyse the measurement chain in QFT
I Provide a general operational framework for measurement
I Covariant; applies in curved as well as flat spacetime
I Passes consistency tests
I Can be used for calculation
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Relativity, quantum theory and measurement – it’s complicated

c <∞ measurements occupy bounded
spacetime regions

~ > 0 ...but are not performed at points

Lorentz invariance no preferred frame
no instantaneous collapse at constant t

Relativity of no preferred order for
simultaneity spacelike separated measurements

Curved spacetime lack of symmetry, nontrivial topology...

Funding

Reporting

Extension of QM measurement rules to QFT is nontrivial and risks pathology

CJ Fewster University of York Measurement schemes for QFT in CST 4 / 24



Relativity, quantum theory and measurement – it’s complicated

c <∞ measurements occupy bounded
spacetime regions

~ > 0 ...but are not performed at points

Lorentz invariance no preferred frame
no instantaneous collapse at constant t

Relativity of no preferred order for
simultaneity spacelike separated measurements

Curved spacetime lack of symmetry, nontrivial topology...

∆E∆t & ~

Extension of QM measurement rules to QFT is nontrivial and risks pathology

CJ Fewster University of York Measurement schemes for QFT in CST 4 / 24



Relativity, quantum theory and measurement – it’s complicated

c <∞ measurements occupy bounded
spacetime regions

~ > 0 ...but are not performed at points

Lorentz invariance no preferred frame
no instantaneous collapse at constant t

Relativity of no preferred order for
simultaneity spacelike separated measurements

Curved spacetime lack of symmetry, nontrivial topology...

Reduced state

Original state
Hellwig & Kraus

Extension of QM measurement rules to QFT is nontrivial and risks pathology

CJ Fewster University of York Measurement schemes for QFT in CST 4 / 24



Relativity, quantum theory and measurement – it’s complicated

c <∞ measurements occupy bounded
spacetime regions

~ > 0 ...but are not performed at points

Lorentz invariance no preferred frame
no instantaneous collapse at constant t

Relativity of no preferred order for
simultaneity spacelike separated measurements

Curved spacetime lack of symmetry, nontrivial topology...

Extension of QM measurement rules to QFT is nontrivial and risks pathology

CJ Fewster University of York Measurement schemes for QFT in CST 4 / 24



Relativity, quantum theory and measurement – it’s complicated

c <∞ measurements occupy bounded
spacetime regions

~ > 0 ...but are not performed at points

Lorentz invariance no preferred frame
no instantaneous collapse at constant t

Relativity of no preferred order for
simultaneity spacelike separated measurements

Curved spacetime lack of symmetry, nontrivial topology...
Ligo

Extension of QM measurement rules to QFT is nontrivial and risks pathology

CJ Fewster University of York Measurement schemes for QFT in CST 4 / 24



Relativity, quantum theory and measurement – it’s complicated

c <∞ measurements occupy bounded
spacetime regions

~ > 0 ...but are not performed at points

Lorentz invariance no preferred frame
no instantaneous collapse at constant t

Relativity of no preferred order for
simultaneity spacelike separated measurements

Curved spacetime lack of symmetry, nontrivial topology...
Ligo

Extension of QM measurement rules to QFT is nontrivial and risks pathology
CJ Fewster University of York Measurement schemes for QFT in CST 4 / 24



Impossible measurements Sorkin 1993

‘By hand’ extension of QM rules to QFT

A

B

C

Claim: nonselective measurement of a typical observable B allows C to determine
whether A has conducted a measurement – superluminal communication.
Presumably, therefore, B represents an impossible measurement.
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‘By hand’ extension of QM rules to QFT

A

B

C

Spacetime extension of B is critical.
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Impossible measurements Sorkin 1993

‘By hand’ extension of QM rules to QFT

A

B

C

“[I]t becomes a priori unclear, for quantum field theory, which observables can be
measured consistently with causality and which can’t.

This would seem to deprive [QFT] of any definite measurement theory, leaving the
issue of what can actually be measured to (at best) a case-by-case analysis”
See e.g., Borsten, Jubb, Kells (2019) for such an analysis.
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Operational approach CJF & Verch, 2018

Instead of constructing rules for QFT de novo, apply a systematic approach by
modelling the measurement process.

A QFT (system) is coupled to another QFT (probe) in a compact spacetime region K
(a proxy for the experimental design). The probe is measured elsewhere.
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Operational approach CJF & Verch, 2018

A QFT (system) is coupled to another QFT (probe) in a compact spacetime region K
(a proxy for the experimental design). The probe is measured elsewhere.

K

Prepare system and probe

Measure probe Updated state

Prepare system

?≈ Hypothetical
local system
measurement

Measurements are performed on the coupled system–probe set-up,
but are described in the language of a fictitious uncoupled system.
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Outline of the idea
Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) is the algebra of system observables on M. We compare
I the uncoupled combination U of A and B

I a coupled combination C with compact coupling region K .
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Outline of the idea
Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) is the algebra of system observables on M. We compare
I the uncoupled combination U of A and B

I a coupled combination C with compact coupling region K .
Define geometrical ‘in’/‘out’ regions M−/+ on which U and C agree.
M± contain Cauchy surfaces =⇒ ∃ identifications τ± : U(M)→ C(M).

τ± translate fictitious uncoupled language to the physical coupled system.

I ‘Prepare system and probe states separately at early times’
I ‘Measure a probe observable at late times’

Measurements on the probe are interpreted as measurements of system observables.
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Algebraic QFT
Describe a QFT on M in terms of a ∗-algebra A(M) with unit and subalgebras
A(M; N) for suitable open regions N ⊂M.

Minimal conditions
Isotony N1 ⊂ N2 =⇒ A(M; N1) ⊂ A(M; N2)

Timeslice A(M; N) = A(M) if N contains a Cauchy surface of M
Einstein [A(M; N1),A(M; N2)] = 0 if N1,2 are causally disjoint
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Describe a QFT on M in terms of a ∗-algebra A(M) with unit and subalgebras
A(M; N) for suitable open regions N ⊂M.

Minimal conditions
Isotony N1 ⊂ N2 =⇒ A(M; N1) ⊂ A(M; N2)

Timeslice A(M; N) = A(M) if N contains a Cauchy surface of M
Einstein [A(M; N1),A(M; N2)] = 0 if N1,2 are causally disjoint

A = A∗ ∈ A(M; N) is interpreted by fiat as an observable localisable in N
NB An observable may be localisable in many distinct regions.

A state is a positive, normalised linear functional ω : A(M)→ C,
assigning an expectation value ω(A) to A ∈ A(M).
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Coupled combinations and scattering
Describe both the system and the probe by AQFTs A, B on M.

Their uncoupled combination is U = A⊗B.

Theory C is a coupled combination of A and B with compact coupling region K .

ch K
L

ch (K ) = J+(K ) ∩ J−(K ) Minimal abstract definition:
∀L outside the causal hull ch (K )
∃ an isomorphism

U(M; L)→ C(M; L)

compatible with isotony.
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Coupled combinations and scattering
Describe both the system and the probe by AQFTs A, B on M.

Their uncoupled combination is U = A⊗B.

Theory C is a coupled combination of A and B with compact coupling region K .

K

M+ M± = M \ J∓(K ) contain Cauchy surfaces for M

Applying timeslice, ∃ isomorphisms

τ± : U(M)→ C(M)

τ± : U(M) = U(M; M±) −→ C(M; M±) = C(M)
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Coupled combinations and scattering
Describe both the system and the probe by AQFTs A, B on M.

Their uncoupled combination is U = A⊗B.

Theory C is a coupled combination of A and B with compact coupling region K .

Upshot: covariantly described advanced/retarded response maps

τ−/+ : U(M)
∼=−→ C(M)

are identifications of the uncoupled and coupled combinations at early/late times.
The scattering map is

Θ = (τ−)−1 ◦ τ+ ∈ Aut(U(M))

Locality: Θ � U(M; N) = id, if N ⊂ K⊥.
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Measurement scheme: prepare early, measure late

Describe measurements of C(M) in uncoupled language.
Fixing a probe preparation state σ and system state ω, the state

ω˜σ = ((τ−)−1)∗(ω ⊗ σ) ω˜σ(X ) = (ω ⊗ σ)((τ−)−1X )

of C(M) is uncorrelated at early times.

An observable B̃ := τ+(1⊗ B) tests probe degrees of freedom at late times.

Measure B̃ in state ω˜σ; interpret as a measurement of a system observable A in state ω
chosen so that

ω(A) = ω˜σ(B̃) = (ω ⊗ σ)(Θ(1⊗ B)) for all ω.
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Measurement scheme - ctd
Problem: find A so that ω(A) = (ω ⊗ σ)(Θ(1⊗ B)) for all ω

Observation:

(ω ⊗ σ)(P ⊗ Q) = ω(P)σ(Q) = ω(σ(Q)P) = ω(ησ(P ⊗ Q))

where ησ : A(M)⊗B(M)→ A(M) linearly extends P ⊗ Q 7→ σ(Q)P.

Solution:
A = εσ(B) def= ησ(Θ(1⊗ B))

εσ(B) = ησ(Θ(1⊗ B)) is called the induced system observable
corresponding to probe observable B.

In QMT language, (C, τ±, σ,B) is a measurement scheme for system observable εσ(B).
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Induced system observables – localisation
Recall: Θ acts trivially on U(M; L) if L ⊂ K⊥.

Theorem (a) If B ∈ B(M; L) with L ⊂ K⊥ then εσ(B) = σ(B)1.

(b) If A ∈ A(M; L) with L ⊂ K⊥ then [A, εσ(B)] = 0 for all B.

Corollary If A obeys a Haag property, then

εσ(B) ∈ A(M; N) for all B ∈ B(M),

where N is any open connected causally convex set containing K .

NB N must contain ch K . The localisation of B is irrelevant.
Consistent with the idea that A(M; N) consists of observables
that are measurable in N.

KL

ch K
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Induced system observables – fluctuations

True and hypothetical expectation values agree, by construction

ω˜σ(B̃) = ω(εσ(B)) for all B ∈ B(M).

εσ : B(M)→ A(M) is linear, completely positive, and obeys

εσ(1) = 1, εσ(B∗) = εσ(B)∗, εσ(B)∗εσ(B) ≤ εσ(B∗B).

Consequently, the true measurement displays greater variance than the hypothetical
one due to detector fluctuations

Var(B̃;ω˜σ) ≥ Var(εσ(B);ω).
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Effects and effect-valued measures

An effect is an observable s.t. B and 1− B are positive,
corresponding to a true/false measurement

Prob(B | ω) = ω(B), Prob(¬B | ω) = ω(1− B).

Unsharp unless B is a projection.

Because εσ is completely positive, but not a homomorphism in general:
I probe effects induce system effects
I even sharp probe effects typically induce unsharp system effects.
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Post-selection and pre-instruments
Suppose a probe-effect B is tested when the system state is ω.

The post-selected system state, conditioned on the effect being observed, should
correctly predict the probability of any system effect being observed, given that B was.
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Post-selection and pre-instruments
Probability of a joint successful measurement of system effect A and probe effect B is

Prob(A&B) = (ω ⊗ σ)(Θ(A⊗ B)) def= (Iσ(B)(ω))(A)

so Prob(A|B) = Prob(A&B)
Prob(B) = (Iσ(B)(ω))(A)

(Iσ(B)(ω))(1) ,

Call Iσ(B) : A(M)∗+ → A(M)∗+ a pre-instrument.

The post-selected state, conditioned on B, is ω′ = Iσ(B)(ω)
(Iσ(B)(ω))(1) (if defined).

Non-selective measurement results in ωB = Iσ(B)(ω) + Iσ(1− B)(ω) = Iσ(1)(ω)
independent of B!
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Locality and post-selection
Theorem For A localisable in K⊥, ω′(A) = ω(Aεσ(B))

ω(εσ(B))

Corollary ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.

ω′(A) = ω(A) for nonselective measurement of B
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Locality and post-selection
Theorem For A localisable in K⊥, ω′(A) = ω(Aεσ(B))

ω(εσ(B))

Corollary ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.

ω′(A) = ω(A) for nonselective measurement of B

If ω has a Reeh–Schlieder property, (e.g., Minkowski vacuum state)

ω′(A) = ω(A) ⇐⇒ εσ(B) = ω(εσ(B))1

for observables A localisable in K⊥.

Post-selecting on nontrivial effects alters expectation values in K⊥ due to correlation.
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Example – correlated observables
Commuting effects A, A′ are perfectly correlated in state ω if

Prob(A&A′) + Prob(¬A&¬A′) = 1 ⇐⇒ ω(A(1− A′)) = 0 = ω((1− A)A′)

Consider a measurement scheme in which A = εσ(B) for probe effect B.
If ω′ is the updated state, conditioned on successful measurement of B, then

Prob(A′ | ω′) = ω′(A′) = 1− E
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Consider a measurement scheme in which A = εσ(B) for probe effect B.
If ω′ is the updated state, conditioned on successful measurement of B, then

Prob(A′ | ω′) = ω′(A′) = 1− E

where E ≥ 0 is bounded by

E2 ≤ (ω ⊗ σ)(∆2)
(

1 + Var(B̃;ω˜σ)
ω(A)2

)
, ∆ = (id−Θ)(A′ ⊗ 1).

Both factors can be reduced by experimental design.

CJ Fewster University of York Measurement schemes for QFT in CST 17 / 24
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Commuting effects A, A′ are perfectly correlated in state ω if

Prob(A&A′) + Prob(¬A&¬A′) = 1 ⇐⇒ ω(A(1− A′)) = 0 = ω((1− A)A′)

Consider a measurement scheme in which A = εσ(B) for probe effect B.
If ω′ is the updated state, conditioned on successful measurement of B, then

Prob(A′ | ω′) = ω′(A′) = 1− E

where E ≥ 0 is bounded by

E2 ≤ (ω ⊗ σ)(∆2)
(

1 + Var(B̃;ω˜σ)
ω(A)2

)
, ∆ = (id−Θ)(A′ ⊗ 1).

Prob(A′ | ω′)→ 1 in the limit of ideal experimentation
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What versus how?

The updated state depends on Θ and B; not just the system observable A = εσ(B).
Depends on how the measurement was made, not just what was measured.

However, E := max
{∣∣∣∣ω′(A′)− ω(A′εσ(B))

ω(εσ(B))

∣∣∣∣ , ∣∣∣∣ω′(A′)− ω(εσ(B)A′)
ω(εσ(B))

∣∣∣∣} ,
obeys E2 ≤ (ω ⊗ σ)(∆2)

(
1 + Var(B̃;ω˜σ)

ω(εσ(B))2

)
, ∆ = (id−Θ)(A′ ⊗ 1).

ω′(A′) ≈ ω({A′, εσ(B)})
2ω(εσ(B)) for those A′ only slightly affected by the interaction.
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Successive measurement of two probes
For i = 1, 2 consider Bi with coupling regions Ki and scattering morphisms Θi .

Combined probe B1 ⊗B2 has coupling region K1 ∪ K2 and morphism Θ̂.

Suppose K2 ∩ J−(K1) = ∅, so K2 is later than K1 according
to some observers and assume causal factorisation, i.e.,

Θ̂ = Θ̂1 ◦ Θ̂2, where Θ̂1 = Θ1 ⊗3 id and Θ̂2 = Θ2 ⊗2 id

K2

K1

CJ Fewster University of York Measurement schemes for QFT in CST 19 / 24



Successive measurement of two probes
For i = 1, 2 consider Bi with coupling regions Ki and scattering morphisms Θi .

Combined probe B1 ⊗B2 has coupling region K1 ∪ K2 and morphism Θ̂.

Suppose K2 ∩ J−(K1) = ∅, so K2 is later than K1 according
to some observers and assume causal factorisation, i.e.,

Θ̂ = Θ̂1 ◦ Θ̂2, where Θ̂1 = Θ1 ⊗3 id and Θ̂2 = Θ2 ⊗2 id

K2

K1
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Theorem Coherence of successive measurement

Iσ2(B2) ◦ Iσ1(B1) = Iσ1⊗σ2(B1 ⊗ B2)

Post-selection on B1 and then B2 agrees with post-selection on B1 ⊗ B2.

CJ Fewster University of York Measurement schemes for QFT in CST 19 / 24



Successive measurement of two probes
For i = 1, 2 consider Bi with coupling regions Ki and scattering morphisms Θi .

Combined probe B1 ⊗B2 has coupling region K1 ∪ K2 and morphism Θ̂.

Suppose K2 ∩ J−(K1) = ∅, so K2 is later than K1 according
to some observers and assume causal factorisation, i.e.,

Θ̂ = Θ̂1 ◦ Θ̂2, where Θ̂1 = Θ1 ⊗3 id and Θ̂2 = Θ2 ⊗2 id

K2

K1

Corollary If K1 and K2 are causally disjoint,

Iσ2(B2) ◦ Iσ1(B1) = Iσ1⊗σ2(B1 ⊗ B2) = Iσ1(B1) ◦ Iσ2(B2)
K1 K2
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Impossible measurements? Bostelmann, CJF & Ruep arXiv:2003.04660

Model A and B measurements using probes

A

B

C

I Alice chooses whether to make a nonselective measurement
I Bob certainly makes a nonselective measurement
I Can Charlie determine whether Alice performed the measurement?

ωAB(C)
?
6= ωB(C)
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Impossible measurements? Bostelmann, CJF & Ruep arXiv:2003.04660

Model A and B measurements using probes

A

B

C

N

More detailed investigation of scattering map locality properties gives

Θ̂2C ⊗ 1⊗ 1 ∈ U(M; N) for region N ⊂ K⊥A ∩M−B

Consequently, Charlie cannot determine whether Alice has measured:

ωAB(C) = (ω ⊗ σ1 ⊗ σ2)(Θ̂1Θ̂2C ⊗ 1⊗ 1) = (ω ⊗ σ1 ⊗ σ2)(Θ̂2C ⊗ 1⊗ 1) = ωB(C)
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Impossible measurements? Bostelmann, CJF & Ruep arXiv:2003.04660

Model A and B measurements using probes

A

B

C

N

The analysis shows that the measurement scheme is free of Sorkin-type pathologies.

Key assumption – the probes and couplings are described by physics respecting locality.

Impossible measurements can only be performed using impossible apparatus.
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A specific probe model
Two free scalar fields: Φ (system) and Ψ (probe) coupled via an interaction term

Lint = −ρΦΨ, ρ ∈ C∞0 (M), K = supp ρ.

Linear equations: standard quantisation applies at least for sufficiently weak coupling.
As formal power series in h ∈ C∞0 (M+),

Θ(1⊗ eiΨ(h)) = eiΦ(f −) ⊗ eiΨ(h−)

where f − and h− − h are supported in
supp ρ ∩ J−(supp h).

h

ρ

εσ(eiΨ(h)) = σ
(
eiΨ(h−)

)
eiΦ(f −) = e−S(h−,h−)/2eiΦ(f −)

if σ is quasifree with two-point function S.
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Examples of induced observables

εσ(eiΨ(h)) = e−S(h−,h−)/2eiΦ(f −)

εσ(Ψ(h)) = Φ(f −)
εσ(Ψ(h)2) = Φ(f −)2 + S(h−, h−)1

Consequently,

E(Ψ̃(h);ω˜σ) = ω(Φ(f −))

Var(Ψ̃(h);ω˜σ) = Var(Φ(f −);ω) + S(h−, h−)

Increased variance in true measurement from detector fluctuations.
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Deformed product on the probe system
εσ : B(M)→ A(M) is not a homomorphism. BUT ∃ a deformed product on B(M),

eiΨ(h) ? eiΨ(h′) = σ(eiΨ(h))σ(eiΨ(h′))
σ(eiΨ(h+h′))

e−iEP (f −,f ′−)/2eiΨ(h+h′)

in which εσ is a homomorphism (though not injective).
Consequence: the induced observables form a subalgebra of A(M)

Im εσ ∼= B(M)/ ker εσ.

so the system is partially represented in the probe algebra.
Example: Ψ(h)’s do not necessarily ?-commute at spacelike separation,

[Ψ(h),Ψ(h′)]? = iEP(f −, f ′−),

allowing for the creation of long-range correlations.
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Summary
I Operational framework of QMT adapted to AQFT

I covariant, formulated for curved as well as flat spacetimes
I framework derived from minimal assumptions

I Probe observables induce local system observables,
I localisable in the causal hull of coupling region

I Post-selected states
I updated state derived from required properties rather than posited
I reproduces idealised correlations in a limit of idealised measurement
I coherence under successive measurements
I invariant under re-ordering of causally disjoint measurements

I Framework is free of impossible measurements
I Computation of induced observables for specific model

CJ Fewster University of York Measurement schemes for QFT in CST 24 / 24



Local modification of couplings in QFT

ψ1 ψ2

An interaction term

ψ1ψ2ϕ1ϕ2

provides a tunable coupling
between ϕ1 and ϕ2.
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Localisation of induced observables
εσ(Ψ(h)n) may be localised in any open causally convex nhd of

supp f − ⊂ supp ρ ∩ J−(supp h)

D W

Localisation region for finite-time coupling is a diamond D.
Localisation region for eternal coupling is a wedge W (can’t do better).
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Back to Unruh

T

Localisation region for finite-time coupling is a diamond D
Measurements may be taken along future of curve beyond D.
Localisation region for eternal coupling is a wedge. HIghly nonlocal.
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