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Introduction



Physical framework

QFT vs. GR

How to describe quantum matter and gravity interplay (Quantum gravity )?

In first approximation,

• QFT on curved spacetimes: quantum matter field φ on a physical state ω

propagating over fixed Lorentzian manifolds (M, g)

• Semiclassical gravity: backreaction on the background geometry

Gµν = 8πG 〈:Tµν:〉ω Gµν = Rµν −
1

2
gµνR

• Physical applications: black hole physics (Hawking radiation, evaporation),

cosmological models for the early Universe (Starobinsky inflation)

Initial-value problem

A well-posed initial-value formulation of semiclassical gravity is requested to

search for physically relevant solutions
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Quantization



The quantum stress-energy tensor

How to compute 〈:Tµν:〉ω
• Stress-energy tensor of a scalar field

Tµν =
1

2
∇µ∇νφ2 +

1

4
gµν�φ2 − φ∇µ∇νφ+

1

2
gµνg

ρσφ∇ρ∇σφ+

+ ξ (Gµν −∇µ∇ν − gµν�)φ2 −
1

2
gµνm

2φ2

• Quantum scalar field φ(f ) over globally hyperbolic spacetimes (M, g):

φ(Pf ) = 0, P = −2 + m2 + ξR, [φ(f1), φ(f2)] = i∆(f1, f2)1

• Hadamard point-splitting regularization :φ2:, :φ∇µ∇νφ:, :Tµν:

ω2
.

= H0+ +W H0+ = lim
ε→0+

(
U

σε
+ V log

(σε
λ2

))
Hadamard state

• Renormalization freedoms

:T̃µν:= :Tµν: +c1m
4gµν + c2m

2Gµν + c3Iµν + c4Jµν

• Locality and conservation

〈:Tµν:〉ω
.

= lim
x′→x

Dµν
(
ω2(x , x ′)− H0+ (x , x ′)

)
locally covariant

∇µ 〈:Tµν:〉ω = 0 covariantly conserved
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Semiclassical Einstein Equation on

cosmological spacetimes



Semiclassical Einstein equations in cosmological models (1/2)

Cosmological spacetime

• Friedmann-Lemâıtre-Robertson-Walker metric (M, g), where M = It × Σ

g = −dt ⊗ dt + a(t)2
3∑

i=1

dx i ⊗ dx i

– t cosmological time

– a(t) scale factor describes the history of the Universe

– H(t) = 1
a
da
dt

the Hubble function

– dτ = a−1dt conformal time such that g = a2η, η = (−1, 1, 1, 1)

Classical model for the matter

• Matter as perfect fluid Tµ
ν = diag(−%, p, p, p)

• Equation of state p = w%, where w = 0, 1/3,−1 for ordinary matter, radiation

and dark energy due to a cosmological constant Λ.

• Friedmann equations

H2 =
8πG

3
%+

Λ

3
,

ä

a
= −

4πG

3
(%+ 3p) +

Λ

3

From now, Λ = 0.
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Semiclassical Einstein equations in cosmological models (2/2)

Semiclassical cosmological model

• Semiclassical equations

−R = 8πG 〈:T:〉ω ∇µ 〈:Tµν:〉ω = 0

• The initial condition is the validity of the energy constraint at the initial time

H2
0 =

8πG

3
〈:%0:〉ω

• Since the state is not a local object, the semiclassical equations are non-local

• Initial-value formulation for the FLRW spacetime (M, g) and the free quantum

matter field (φ, ω) with initial data
(
a0, a′0, a

′′
0 , a

(3)
0

)

−R = 8πG 〈:T:〉ω
G00(τ0) = 8πG 〈:T00:〉ω (τ0)

∇µ 〈:Tµν:〉ω = 0 X

• We look for existence and uniqueness of solutions of that system in case of

non-conformal coupling, namely for ξ 6= 1
6

.
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Energy constraint



Quantum state for FLRW spacetimes (1/3)

First step

Fix a regular state ω at τ = τ0 which fulfils the initial energy constraint

G00(τ0) = 8πG 〈:T00:〉ω (τ0)

• Vacuum-like state: quasi-free, pure, homogeneous and isotropic

ω2(x , y) = lim
ε→0+

1

(2π)3

∫
R3

ζ̄k (τx )

a(τx )

ζk (τy )

a(τy )
e i
~k·(~x−~y)e−εkd~k k

.
= |~k|

• Temporal modes ζk (τ)

ζ′′k (τ) + Ω2
k (τ)ζk (τ) = 0 Ωk =

√
k2 + w(τ)

with the potential w(τ) = a2m2 + (ξ − 1/6)a2R > 0.

• Conformal vacuum state ωc : a solution χk (τ) can be constructed as convergent

Dyson series using a perturbative potential V (τ) = w(τ)− w(τ0) with respect to

the initial conditions

χk (τ0) =
1
√

2k0
eik0τ0 χ′k (τ0) =

ik0√
2k0

eik0τ0 k2
0
.

= Ω2
k (τ = τ0).
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Quantum state for FLRW spacetimes (2/3)

• Point-splitting regularization mode-wise for
〈
::φ2::
〉
ω

and 〈::T00::〉ω〈
:φ2:
〉
ω

= lim
ε→0+

1

(2π)3a2

∫
R3

(
|ζk |2 − CH

φ2 (τ, k)
)
e−εkd~k + rest

〈:T00:〉ω =
1

(2π)3a4

∫
R3

(
%k [ζk , ζ

′
k ]− CH% (τ, k)

)
d~k + rest

Functions CH
φ2 ,C

H
% and rests depend up to a(3)(τ) point-splitting

• ωc gives a finite
〈
:φ2:
〉
ωc
∈ C0([τ0, τ1]), but it is not regular enough for ξ 6= 1/6

to compute ∂τ
〈
:φ2:
〉
ω

and 〈:T00:〉ω
• Changing the initial conditions of χk corresponds to change the state with a

Bogoliubov transformation

ζk (τ) = Akχk (τ) + Bk χ̄k (τ)

• Coefficients Ak , Bk are fixed by the initial data and can be chosen sufficiently

regular to construct other states
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Quantum state for FLRW spacetimes (3/3)

Regular states

• Modes ζk define a regular state ω if at τ = τ0

|ζ2
k (τ)| − CH

φ2 (τ, k),
d

dτ

[
|ζ2

k |(τ)− CH
φ2 (τ, k)

]
, %k [ζk , ζ

′
k ]− CH% (τ, k) ∈ L1(k2dk)

and 〈
:φ2:
〉
ω
∈ C2 ([τ0, τ1]) 〈:T00:〉ω ∈ C0 ([τ0, τ1])

• Examples: Parker’s fourth-order adiabatic states (Phys.Rev.D 36, 2963),

instantaneous vacuum state (Phys.Rev.D 91, 064051), Olbermann states of low

energy (Class. Quantum Grav. 24), . . .

Proposition

Given the initial data
(
a0, a′0, a

′′
0 , a

(3)
0

)
, it is always possible to select initial conditions

that fix the regular state ω in such a way that the energy constraint

G00 = 8πG 〈:T00:〉ω
is satisfied at τ = τ0.

From now, the quantum state ω will be considered fixed once and for all
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The traced semiclassical Einstein

equation



Semiclassical Einstein equations in cosmological models (3/3)

Second step

Solving the traced semiclassical Einstein equation: −R = 8πG 〈:T:〉ω

〈:T:〉ω =

(
3

(
ξ −

1

6

)
�−m2

)〈
:φ2:
〉
ω

+ TA + β1m
4 + β2m

2R + β3�R.

• State-dependent contribution:〈
:φ2:
〉
ω

= lim
x′→x

(
ω2(x , x ′)−H0+ (x , x ′)

)
=W(x , x)

• Trace anomaly arising because H is not solution of the equation of motion:

TA =
1

4π2

(
(6ξ − 1)2R2

288
+

RµνρσRµνρσ − RµνRµν

720

)
up to ren. fr.

• Renormalization constants:

β1 ⇒ Λ β2 ⇒ G β3 ⇒ Quantum freedom

• Non-classical dynamics:

1. 2
〈
:φ2:
〉
ω

and 2R contain higher order derivatives of a(τ) than the second

2. 2
〈
:φ2:
〉
ω

is highly non-local functional of a(τ)
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Partial integration

• We shall rewrite this semiclassical equation as a system of equations{
(−�+ Mc )F = S〈
:φ2:
〉
ω
− cξR = F

where Mc ∝ m2, cξ ∝ β3 and the source function

S
.

=
1

3(ξ − 1/6)

(
β1m

4 +
R

8πG
+ β2m

2R + β3McR + TA

)
depends on the derivatives of a(τ) up to the second order

• In case of FLRW,{
PcF = S〈
:φ2:
〉
ω
− cξR = F

Pc
.

=
1

a3(τ)

(
∂2
τ + a2(τ)Mc −

1

6
a2(τ)R

)
a(τ)

• The initial data (F ,F ′) (τ0) =
(
F0,F ′0

)
for the function F (a,R) are constructed

out to the initial data of the geometry
(
a0, a′0, a

′′
0 , a

(3)
0

)
and the regular state ω

• There exist a unique solution F (a, r) in the finite interval [τ0, τ1] which depends

continuously on the initial data.

• Estimates for the solution can be obtained using the Grönwall lemma or

constructing the retarded operator ∆R
c related to Pc
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Semiclassical equation as fixed point equation

New semiclassical equation

• The traced semiclassical Einstein equation is reduced to〈
:φ2:
〉
ω

= S S
.

= cξR + F (a,R)

where F (a,R) is the unique solution constructed previously

• We shall study its time derivative

∂τ
(
a2
(〈

:φ2:
〉
ω
− cξR − F (a,R)

))
= 0.

in order to be able to impose the initial data a(3)(τ0) = a
(3)
0

• Prove that ∂τ
(
a2
(〈

:φ2:
〉
ω
− cξR − F (a,R)

))
= 0 is a fixed point equation

X ′ = C[X ′] X
.

=
1

6
a2R =

a′′

a

• Construct a contraction map C : Bδ ⊂ C([τ0, τ1])→ Bδ on the closed ball

Bδ
.

=
{
X ′ ∈ C([τ0, τ1]) | X ′(τ0) = X ′0

}
δ > 0

equipped with the uniform norm ‖ · ‖∞, when τ1 − τ0 is sufficiently small

• The existence and uniqueness of a solution is consequence of the Banach fixed

point theorem
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The unbounded operator in the state contribution

The source of the regularity issues

• The analysis of ∂τ
(
a2
〈
:φ2:
〉
ω

)
yields that the semiclassical equation has the form

Tτ0 [V ′] = h V = m2
(
a2 − a2

0

)
+ (ξ − 1/6)

(
a′′

a
−

a′′0
a0

)
.

where h is a combination of functions and functionals of V

Tτ0 [f ]
.

= −
1

8π2

∫ τ

τ0

f ′(η) log(τ − η)dη f ∈ C1 ([τ0, τ ]) .

1. Retarded operator: Tτ0 depends on [τ0, τ ]

2. Higher-order derivative: Tτ0 acts on V ′′, which contains a(4).

3. Unbounded operator: one can prove that ‖Tτ0 [f ]‖∞ � C‖f ‖∞
4. Generality: Tτ0 does not depend on the details of the state

• A way to overcome this problem is to study an inversion formula for Tτ0 [f ] = h

and to prove the continuity of the associated inverse operator T −1
τ0 [h]
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The inverse operator

Properties of T −1
τ0

• The inversion formula for h = Tτ0 [f ], f ∈ C1([τ0, τ1]) is

f (τ) = f (τ0) +

∫ τ

τ0

K(τ − η)h(η)dη

where the kernel K is obtained by the inverse Laplace transform and yields

K(x)
.

=
1

2πi

∫ α+i∞

α−i∞
esx

8π2

γ + log s
ds, α > e−γ , γ : Euler-Mascheroni constant

• The inverse operator T −1
τ0 [h] is continuous on C([τ0, τ ]):

‖T −1
τ0

[h]‖∞ ≤
(∫ τ

τ0

|K(τ − η)|dη
)
‖h‖∞ ≤ C∞‖f ‖∞.

• The constant C∞ depends continuously on τ − τ0 and vanishes for τ → τ0

• It is a retarded operator, so causality is respected

T −1
τ0 can play the role of contraction map in the semiclassical equation: adopting the

inversion formula, equation Tτ0 [V ′] = h can be written as

V ′ = V ′0 + T −1
τ0

[h]
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Existence and uniqueness of solutions of local mild solutions (1/2)

The semiclassical equation becomes a fixed point equation

X ′ = C[X ′] C[X ′]
.

= X ′0 −
2m2

(6ξ − 1)
(aa′ − a0a

′
0)−

1

(6ξ − 1)
T −1
τ0

[h]

Proposition

Fix δ > 0 and let Bδ the closed ball in the Banach space C([τ0, τ1]) with finite

τ1 > τ0, centred in X ′0. For τ1 sufficiently small, the map C : Bδ ⊂ C([τ0, τ1])→ Bδ is

a contraction on Bδ, namely there exists C ∈ (0, 1) such that

‖C[X ′]− X ′0‖∞ ≤ δ, ‖C[X ′2]− C[X ′1]‖∞ = C‖X ′2 − X ′1‖∞

Hence, there exists a unique fixed point of the equation X ′ = C[X ′] in Bδ. details

Theorem

Given some initial data (a0, a′0, a′′0, a
(3)
0 ) at τ = τ0 and a regular quasi-free

compatible state ω, there exists a non-empty interval [τ0, τ1] and a closed ball

Bδ such that a unique mild solution of X ′ = C[X ′] exists
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Conclusions



Summary and final comments

• Solving the semiclassical Einstein equation in FLRW spacetimes means to apply

the Banach fixed-point theorem and construct a contraction map

• When higher-order derivatives terms are involved, the proof is achieved after

rewriting the semiclassical equation in a new non-standard form

• Looking for numerical algorithms to find approximate solutions

Open questions

• Existence and uniqueness of strong solutions and global solutions

• Implications on cosmological models (inflation)

• Can this analysis be applied to other spacetimes?
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Expectation values of :φ2: and :T00:

Point-splitting regularization mode-wise

〈:φ2:〉ω =
1

(2π)3a2

∫
R3

(
|ζk |

2 − CH
φ2 (τ, k)

)
d~k +

w(τ)2

8π2a2
log

(
w(τ0)

a(τ)

)
−

w(τ0)2

16π2a2
+ α1m

2 + α2R(τ)

〈:T00:〉ω =
1

(2π)3a4

∫
R3

(
|ζ′k |

2

2
+
(
k2 + a2m2 − (6ξ − 1) a2H2

) |ζk |2
2

+ aH (6ξ − 1) 2Re(ζkζ
′
k )− CH

% (τ, k)

)
d~k

−
H4

960π2
+

(
ξ −

1

6

)2 3H2R

8π2
+ k1m

4 + k2m
2G00 + k3I00

Point-splitting functions

CH
φ2 (τ, k)

.
=

1

2k0
−

V (τ)

4k3
0

,

CH% (τ, k)
.

=
k

2
+

a2m2 − a2H2(6ξ − 1)

4k
−

a4m4 + 12
(
ξ − 1

6

)
m2a4H2 − a4

(
ξ − 1

6

)2
2I00(τ)

16k(k2 + a2

λ2 )
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Details about the contraction map C

Functional derivative

• Given a functional F : D → C in a Banach space D, F is Gateaux differentiable

at V ∈ D if the exists the functional (or Gateaux) derivative

δF [V ,W ]
.

= lim
ε→0+

F [V + εW ]−F [V ]

ε
∀W ∈ D

• If δF is (uniformly) continuous in V for every W , then F is locally Lipschitz

‖δF [V ,W ]‖D ≤ C‖W ‖D ⇒ ‖F [V ]−F [W ]‖D ≤ C‖V −W ‖D

Strategy of the proof

• C is a linear combination of compositions of functions or functionals of a, V and

X which are continuous and have continuous functional derivative with respect

to X.

• Fixed the initial data, X is uniquely assigned from X ′ by

X (τ) = X0 +

∫ τ

τ0

X ′(η)dη

and determines a unique FLRW spacetime (M, g [X ]) with the scale factor

a[X ](τ) constructed as the unique solution of a′′ = Xa

• The proof follows from the continuity of T −1
τ0 and from the property of C∞
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