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Introduction



Physical framework

QFT vs. GR

How to describe quantum matter and gravity interplay (Quantum gravity)?
In first approximation,
o QFT on curved spacetimes: quantum matter field ¢ on a physical state w
propagating over fixed Lorentzian manifolds (M, g)

o Semiclassical gravity: backreaction on the background geometry

1
Guv =87G (:Tpuwi),, Guv = Ruv — ng,R

o Physical applications: black hole physics (Hawking radiation, evaporation),
cosmological models for the early Universe (Starobinsky inflation)
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Initial-value problem

A well-posed initial-value formulation of semiclassical gravity is requested to
search for physically relevant solutions




Quantization



The quantum stress-energy tensor

How to compute (:7,,:)
e Stress-energy tensor of a scalar field

1 2, 1 > 1
T,uu = avuvyu’ + Zg!“,Dz)‘ —oVuVio + nggpc“v/’v”‘ -+

o1 5
+&(Guv — VuVy — gu0) ¢° — ngm%f
o Quantum scalar field ¢(f) over globally hyperbolic spacetimes (M, g):
#(Pf)=0,  P=-0+m*+£R,  [o(h) ¢(R)] =iA(f, H)1

o Hadamard point-splitting regularization :¢?:, DV Vg, Ty

U
wy =Hor + W Hor = lim <— + Viog ("E >> Hadamard state

e—0t \ O¢ ﬁ
¢ Renormalization freedoms
Tuw= Ty +am®guy + c2m?Guy + c3luy + cadyy
e Locality and conservation

(Tuw)y, = lim D, (wa(x,x") — Ho+ (x,x")) locally covariant
x'—x

i VH (:Tuw:),, = 0 covariantly conserved



Semiclassical Einstein Equation on
cosmological spacetimes



Semiclassical Einstein equations in cosmological models (1/2)

v

Cosmological spacetime

o Friedmann-Lemaitre-Robertson-Walker metric (M, g), where M = [y x &

3
g = —dt®dt + a(t)? Z dx' @ dx’
i=1

— t cosmological time

— a(t) scale factor describes the history of the Universe

H(t) = %% the Hubble function

— d7 = a—'dt conformal time such that g = a?n, n = (—1,1,1,1)

Classical model for the matter

o Matter as perfect fluid T,” = diag(—o, p, p, p)

o Equation of state p = wp, where w = 0,1/3, —1 for ordinary matter, radiation
and dark energy due to a cosmological constant A.
o Friedmann equations
81 G A E] 4G A
H>= """+ 2, -=——(e+3p)+ =
3 213 ; 3 e+3p)+3

From now, A = 0.



Semiclassical Einstein equations in cosmological models (2/2)

Semiclassical cosmological model

o Semiclassical equations
—R=8nG(:T:), VH(Tuw), =0

e The initial condition is the validity of the energy constraint at the initial time
3G
2 o
Hy = —— (e0t).,
3
o Since the state is not a local object, the semiclassical equations are non-local
o Initial-value formulation for the FLRW spacetime (M, g) and the free quantum

matter field (¢, w) with initial data (ao,aé, aé’,a((f))
—R=8nG(:T:),
Goo(70) = 87G (:Too:),, (10)
VH (T, =0 v

e We look for existence and uniqueness of solutions of that system in case of
non-conformal coupling, namely for & # é



Energy constraint



Quantum state for FLRW spacetimes (1/3)

Fix a regular state w at 7 = 79 which fulfils the initial energy constraint

Goo(To) =8nG <:T00:>W (To)

e Vacuum-like state: quasi-free, pure, homogeneous and isotropic
1 Ci(7x) Ck(7y) ik (7=7)
2o+ @m)® Jre a(m) alry)

e Temporal modes (i (7)

L)+ Q2(T)Ck(T) =0 Qi = /K2 + w(T)
with the potential w(7) = a?m? + (¢ — 1/6)a’*R > 0.

e Conformal vacuum state w®: a solution xx(7) can be constructed as convergent
Dyson series using a perturbative potential V(1) = w(7) — w(7g) with respect to
the initial conditions

wa(x,y) = e~ *dk k=K

1 iko .
Xk (10) = Worn etkomo Xk (10) = ok etkomo k§ = Q% (T = 70).



Quantum state for FLRW spacetimes (2/3)

o Point-splitting regularization mode-wise for (:¢p%) and (:Too:),,

42, . 1 2 ek i
(%), = i, W/u@ (ICkl 7 (T, k)) e kdk + rest

(:Too*)w #/‘ (gk[(k,gk] — CH(T k)) dk + rest

Functions C;{Z, C and rests depend up to a(®(7)

e w°© gives a finite <:<z>2:>WC € C%[ro,71]), but it is not regular enough for £ # 1/6
to compute O <:¢>2:>w and (:Too:)w

e Changing the initial conditions of x, corresponds to change the state with a
Bogoliubov transformation

Ck(7) = Akxk(T) + Brxu(7)

e Coefficients Ay, By are fixed by the initial data and can be chosen sufficiently
regular to construct other states



Quantum state for FLRW spacetimes (3/3)

Regular states

e Modes (i define a regular state w if at 7 = 19
d /
] = Cr k), = [I2Ir) = €m0 anli il = €y k) € L} (KPlk)
and
<:¢2:>w e c? ([r0,m1]) (:Too:),, € c® ([r0, 1))

o Examples: Parker’s fourth-order adiabatic states (Phys.Rev.D 36, 2963),
instantaneous vacuum state (Phys.Rev.D 91, 064051), Olbermann states of low
energy (Class. Quantum Grav. 24), ...
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Proposition
Given the initial data (ao, aj, a, 383)) , it is always possible to select initial conditions
that fix the regular state w in such a way that the energy constraint

Goo = 87G (:Too:),,

is satisfied at T = 19.

From now, the quantum state w will be considered fixed once and for all



The traced semiclassical Einstein
equation




Semiclassical Einstein equations in cosmological models (3/3)

Second step

Solving the traced semiclassical Einstein equation: —R =87 G (:T:),,

(T, = (3 (g — %) o-— m2) (:0*), + Ta+ pim* + Bom’R + Bs0R.

o State-dependent contribution:
2. = [F / ) —
S Xl/liwx (wa(x,x") = Hor (x,x")) = W(x,x)

e Trace anomaly arising because H is not solution of the equation of motion:

— ((65 —1)?R? | Ryuupo RMP7 — RWRW>
A= —> +
288 720

=12 up to ren. fr.
i

e Renormalization constants:
B1=A Br= G B3 = Quantum freedom

o Non-classical dynamics:

1. O <:¢2:>w and OR contain higher order derivatives of a(7) than the second
i 2. O(:¢*) , is highly non-local functional of a(7)



Partial integration

e We shall rewrite this semiclassical equation as a system of equations
(-O+ M)F=S
<:¢2:> —cR=F
where M oc m? , C¢ o< #3 and the source function
1
e —
3(§ - 1/6)
depends on the derivatives of a(7) up to the second order
e In case of FLRW,
PelF =8 .1 ( 5 5 1, )
[Pe = 02+ a“(1)M: — =a°(7)R ) a(7
{<:¢2:>w—ch—F “S A M gr R o)
e The initial data (F, F’) (10) = (Fo, F§) for the function F(a, R) are constructed
(3)

out to the initial data of the geometry (ao, ag, ay , ag ) and the regular state w

(61 4+ o G+52m R+ B3Mc:R + TA>

e There exist a unique solution F(a, r) in the finite interval [g, 71] which depends
continuously on the initial data.

e Estimates for the solution can be obtained using the Gronwall lemma or
constructing the retarded operator Af related to P.

v o



Semiclassical equation as fixed point equation

New semiclassical equation

e The traced semiclassical Einstein equation is reduced to
(¢*),=6  &=cR+F(aR)
where F(a, R) is the unique solution constructed previously
e We shall study its time derivative
Or (32 (<:¢2:>w —cR—F(a,R))) =0.
in order to be able to impose the initial data a(®)(7p) = 383)
o Prove that 9; (a2 (<:¢2:>w —ccR— F(a,R))) = 0'is a fixed point equation

a’

X' =c[xX1 X= ler=?

6 a

o Construct a contraction map C : Bs C C([rg,71]) — Bs on the closed ball
Bs = {X' € C([ro,n]) | X'(m0) = X5}  6>0

equipped with the uniform norm || - ||oo, when 71 — 79 is sufficiently small

e The existence and uniqueness of a solution is consequence of the Banach fixed
point theorem



The unbounded operator in the state contribution

The source of the regularity issues

e The analysis of 0 (32 <:¢2:>w) yields that the semiclassical equation has the form
a// a//
TrHlV1=h  V=m?(a®—a3) + (£ - 1/6) (7 = i) .

a ao

where h is a combination of functions and functionals of V

Tolfl =~ 5z [ ()toglr —mdn £ €€ ([, ).

1. Retarded operator: 7, depends on [rg, 7]
Higher-order derivative: 77, acts on V", which contains a(*).

Unbounded operator: one can prove that || 7 [f]lloc % C||f]loo

Ll

Generality: 77, does not depend on the details of the state

e A way to overcome this problem is to study an inversion formula for 7, [f] = h
and to prove the continuity of the associated inverse operator ﬁ;l[h]

v »



The inverse operator

Properties of 7'
o The inversion formula for h = T, [f], f € C*([r0,71]) is
f(r) = f(m)+ [ K(r = )i
0
where the kernel K is obtained by the inverse Laplace transform and yields

. 1 a+ioco 87?2
K(x) = — / e ——ds, a>e 7, 7 : Euler-Mascheroni constant
27 Ja—ioo v+ logs

e The inverse operator ﬁgl[h] is continuous on C([o, 7]):

177 Allloo < (/ |K(7 —n)\dn> lAlloe < Coollflloo-

0
e The constant C depends continuously on 7 — 79 and vanishes for 7 — 79

o It is a retarded operator, so causality is respected

’7;%1 can play the role of contraction map in the semiclassical equation: adopting the
inversion formula, equation 7}0[V’] = h can be written as

V/ = VOI + ATT\"‘ l[h]



Existence and uniqueness of solutions of local mild solutions (1/2)

The semiclassical equation becomes a fixed point equation

2m? 1

X' =cC[X'] CIX'l = X§ — (aa’ — apap) —

(6£-1)

TN [

Proposition

Fix 6 > 0 and let Bs the closed ball in the Banach space C([ro,71]) with finite
T1 > 7o, centred in XJ. For 11 sufficiently small, the map C : Bs C C([r0,T1]) = Bs is
a contraction on Bs, namely there exists C € (0,1) such that

ICIX'] = Xgllow <6, IC1X3] = CIX{lloo = ClIX3 — X{lloo
Hence, there exists a unique fixed point of the equation X' = C[X'] in Bs. a=D



Existence and uniqueness of solutions of local mild solutions (1/2)
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2m? 1
m (2a’ — agap) — —— 7, 1[h]

X' = C[X/] C[Xl] = X(; - (6£ o 1) 70

(66— 1)
Proposition
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. s 3 .
Given some initial data (ao,a’o,a”o,ag )) at 7 = 79 and a regular quasi-free

compatible state w, there exists a non-empty interval [1g, 71] and a closed ball
Bs such that a unique mild solution of X’ = C[X'] exists




Conclusions




Summary and final comments

o Solving the semiclassical Einstein equation in FLRW spacetimes means to apply
the Banach fixed-point theorem and construct a contraction map

e When higher-order derivatives terms are involved, the proof is achieved after
rewriting the semiclassical equation in a new non-standard form

e Looking for numerical algorithms to find approximate solutions

Open questions

o Existence and uniqueness of strong solutions and global solutions
o Implications on cosmological models (inflation)

e Can this analysis be applied to other spacetimes?
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Expectation values of :¢%: and : Tyo:

Point-splitting regularization mode-wise

1 g L ow(r)? w (T w(ro)?
(6%)e o /R3 (16l = €Z5(r, k) ak + 8752:2 |og< ai;’;) = 16(7r20212 +a1m® + asR(r)
T 1 (1¢kP 2, 2 2 1¢kl? =
(:Tootyw — /R3 =+ (K +a°m” = (6¢ — 1)a’H ) + aH (6€ — 1) 2Re(CCf) — CE(r k) | dR

H* 2 3H’R
- + (5 - 6) P + k1m + k2m Goo + k3lpo

Point-splitting functions

o1 V(T)
CH(r k) = — — ,
(72 K) 2kg  4K3
” _k 2@mP - @HA66—1) atm+12(¢ — 1) m2atH? — a* (€ — 1) 2l0(7)
Cr(rk)=—-+ - _
¢ 4k 16k(K2 + %)
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Details about the contraction map C

v

Functional derivative
e Given a functional 7 : D — C in a Banach space D, F is Gateaux differentiable
at V € D if the exists the functional (or Gateaux) derivative
FlV + eW] = F[V]
€

SF[V, W] = lim YW eD
e—0

o If 6F is (uniformly) continuous in V for every W, then F is locally Lipschitz

[6F[V, Wllp < ClIW[p = [FIVI-F[W]lp < ClIV-Wl|p
Strategy of the proof

e C is a linear combination of compositions of functions or functionals of a, V and

X which are continuous and have continuous functional derivative with respect
to X.

o Fixed the initial data, X is uniquely assigned from X’ by
T
X(7) = Xo +/ X! (m)dn
70

and determines a unique FLRW spacetime (M, g[X]) with the scale factor
a[X](7) constructed as the unique solution of a”’ = Xa

e The proof follows from the continuity of ’TTEI and from the property of Cs
18
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