High-energy bounds on Møller operators

Henning Bostelmann

University of York

LQP meeting, 18 June 2020

Joint work with D. Cadamuro (Leipzig) and G. Lechner (Cardiff), arXiv:1912.11092

• For two selfadjoint operators H_0 and $H_1 = H_0 + V$, consider the Møller operators

$$
\Omega_{\pm}:=\operatornamewithlimits{ s-lim}_{t\rightarrow\pm\infty}e^{itH_1}e^{-itH_0}.
$$

- Heuristic expectation: At high energies (i.e., on subspaces for large spectral values of *H*₀), one has $\Omega_+ \approx 1$.
- More precisely, we ask whether for some continuous function *f*,

$$
\|(\Omega_{\pm}-1)f(H_0)\|<\infty.
$$

- When does this happen? How fast can *f* grow?
- How to find "effective" criteria for this bound to hold?
- Motivating example from quantum physics: "quantum backflow"

A motivating example from quantum mechanics:

- Consider a free particle in one dimension, $\psi \in L^2(\mathbb{R})$
- Probability flux at point *x*, averaged with test function $q > 0$:

•
$$
J(g) = \int g(x)J(x) = \frac{1}{2}(Pg(X) + g(X)P)
$$

- $\langle \psi, J(x)\psi \rangle = \frac{1}{2m} \left(\overline{\psi(x)} \psi'(x) \overline{\psi'(x)} \psi(x) \right).$
- Spectral values of the probability flux:
	- $J(g)$ has spectrum in all $\mathbb R$.
	- Let *E* be the projector onto positive momentum, then $EJ(g)E$ has spectrum in some interval $[-\epsilon, \infty)$
	- Different from classical mechanics, it is not positive ("quantum backflow effect")
	- Instead, it is bounded below ("quantum inequality"; Eveson/Fewster/Verch '03).
	- \bullet This is reminiscent of "quantum energy inequalities" in QFT.

EJ(*g*)*E* is bounded below. What happens when scattering is present?

Is *E*Ω ∗ [±]*J*(*g*)Ω±*E* bounded below?

 $\|\Omega_{\pm}^*J(g)\Omega_{\pm}-J(g)\|\leq 2\|(\Omega_{\pm}-1)^*(1+H)^{1/2}\|\ \|(1+H)^{-1/2}J(g)\|.$

- Hence the "quantum inequality" is stable under scattering if $\|(\Omega_{\pm} - 1)^*(1 + H)^{1/2}\| < \infty.$
- We showed this by a direct argument (B./C./L. 2017) for a wide class of potentials *V*.
- But is there a general principle underlying?

GIZMODO

Pushing Particles Forwards Might Make Them Go Backwards Because Quantum

Physics Is Bonkers

Rvan F. Mandelbaum 7/18/17 6:08pm

Filed to: CRAZY PHYSICS ~

"We wanted to show this is a universal quantum mechanical effect," study author Daniela Cadamuro from the Technical University of Munich in Germany told Gizmodo. "In the presence or absence of a force, the particle will always have a probability to move backward, even if there is a positive momentum."

One of quantum mechanics' core tenets is that the smallest particles act like dots and flowing waves at the same time. That's demonstrated by a quintessential experiment: If you shoot

Consider two selfadjoint operators H_0 , H_1 on a Hilbert space H_1 , let P_j^{ac} project onto their space of absolutely continuous spectrum, and define the Møller operators

$$
\Omega_{\pm}(H_1,H_0):=\mathop{\hbox{\rm s-lim}}_{t\to\pm\infty}e^{itH_1}e^{-itH_0}P_0^{\hbox{\rm ac}}.
$$

(You may think $H_1 = H_0 + V$, but is that the right viewpoint?)

Consider two selfadjoint operators H_0 , H_1 on a Hilbert space H_1 , let P_j^{ac} project onto their space of absolutely continuous spectrum, and define the Møller operators

$$
\Omega_{\pm}(H_1,H_0):=\mathop{\hbox{\rm s-lim}}_{t\to\pm\infty}e^{itH_1}e^{-itH_0}P_0^{\hbox{\rm ac}}.
$$

(You may think $H_1 = H_0 + V$, but is that the right viewpoint?)

Definition

Let H_0 and H_1 be self-adjoint operators such that $\Omega_+(H_1, H_0)$ exist; let $f \in C(\mathbb{R})$. Then (H_1, H_0) is called *f-*bounded if $(\Omega_\pm(H_1, H_0) - P_1^{\rm ac} P_0^{\rm ac}) f(H_0)$ is bounded.

Is this fulfilled in examples? Which *f* can be chosen?

How strong is the condition of *f*-boundedness? Example A: all *f*-bounds

- Consider $H_0 = -i\partial_x$ on $\mathcal{H} = L^2(\mathbb{R}),$
	- $H_1 = -i\partial_x + P_\xi$ where P_ξ projects onto some ξ with $\tilde{\xi}$ compactly supported.
- **In that case,** $H_1 = H_0$ **on subspaces of large momenta, and** $\Omega_+ = 1$ **there.**
- \bullet Hence $(Ω₊ − 1) f(H₀)$ is bounded no matter what $f \in C(\mathbb{R})$ we choose!

Example B: no *f*-bounds

Take $H_0 = -i\partial_x$ on $\mathcal{H} = L^2(\mathbb{R})$, and $H_1 = -i\partial_x + v(x)$.

$$
(\Omega_{\pm}\psi)(x)=w_{\pm}(x)\psi(x),\quad w_{\pm}(x):=\exp i\int_x^{\pm\infty}v(y)\,dy.
$$

- $\mathsf{Let}\ (\mathsf{U}(p)\psi)(x)=e^{ipx}\psi(x).$ Then $\mathsf{U}(p)\Omega_{\pm}\mathsf{U}(p)^{*}=\Omega_{\pm}$ and $U(p)f(H_0)U(p)^{-1} = f(H_0 - p).$
- \bullet Hence if (*H*₁, *H*₀) was *f*-bounded, then $(Ω₊ − 1)$ *f*($H₀ − p$) is uniformly bounded in *p*.

Towards *f*-boundedness

How can we estimate $(\Omega_{\pm} - 1) f(H_0)$ in the general case?

- We need a more explicit description of the Møller operator.
- For example, in terms of the resolvents $R_j(z) = (H_j z\mathbf{1})^{-1}$:

$$
\Omega_{\pm}(H_1, H_0) = \lim_{\epsilon \downarrow 0} \frac{\epsilon}{\pi} \int R_1(\lambda \mp i\epsilon) R_0(\lambda \pm i\epsilon) \ d\lambda.
$$

Hence, at least formally,

$$
\Omega_{\pm}(H_1, H_0) - \mathbf{1} = \lim_{\epsilon \downarrow 0} \frac{\epsilon}{\pi} \int \Big(R_1(\lambda \mp i\epsilon) - R_0(\lambda \mp i\epsilon) \Big) R_0(\lambda \pm i\epsilon) \ d\lambda.
$$

- To really obtain estimates here, we need more information about the limit values of the resolvents at the real axis.
- This is available in the smooth method of scattering theory.

Smooth method

Smooth method of scattering theory:

- Mostly applicable to differential operators and their perturbations.
- \bullet Here the boundary values $\lim_{\epsilon \to 0} R(\lambda \pm i\epsilon)$ are taken seriously ("limiting absorption principle").
- Of course the limit does not exist in operator norm. But consider the following well-known example:

•
$$
H_0 = -\partial_x^2
$$
 on $\mathcal{H} = L^2(\mathbb{R})$

• Resolvent $R_0(z)$ has integral kernel

$$
K(x, y; z) = \frac{i}{2\sqrt{z}} \exp (i\sqrt{z}|x - y|).
$$

- If $\alpha > \frac{1}{2}$, then $(1 + x^2)^{-\alpha/2} K(x, y; z) (1 + y^2)^{-\alpha/2}$ converges to a "good" (Hilbert-Schmidt) kernel as $Im z \rightarrow 0+$.
- That suggests the following framework.

Setting of the smooth method

- Consider a Gelfand triple $X \subset \mathcal{H} \subset \mathcal{X}^*$.
	- \mathcal{X} a Banach space, \mathcal{X}^* its conjugate dual
	- Scalar product $\langle \cdot , \cdot \rangle$ on H yields $\mathcal{H} \subset \mathcal{X}^*$ via $\varphi \mapsto \langle \cdot , \varphi \rangle$.
	- **•** Embeddings assumed continuous and dense.
- \bullet H₀ is called \mathcal{X} -smooth if

$$
R_0(\lambda \pm i0) := \lim_{\epsilon \downarrow 0} R_0(\lambda \pm i\epsilon)
$$

exist in $\mathfrak{B}(\mathcal{X}, \mathcal{X}^{*})$ for $\lambda \in U$, where U is an open set of full measure, and the extended R_0 is locally Hölder continuous.

- If $R_0(z) \in FA(\mathcal{X}, \mathcal{X}^*)$ for $\text{Im } z \neq 0$, and $V \in \mathfrak{B}(\mathcal{X}^*, \mathcal{X})$, then $H_1 := H_0 + V$ is also X-smooth (but U might change).
- If H_0 , H_1 are both \mathcal{X} -smooth, and $V := H_1 H_0 \in \Gamma_2(\mathcal{X}^*, \mathcal{X})$ then the Møller operators $\Omega_{+}(H_1, H_0)$ exist.

So what about *f*-boundedness and the smooth method?

So what about *f*-boundedness and the smooth method?

Definition

We say that an X-smooth operator *H* is of high-energy order β if there exist $\hat{\lambda}, b > 0$ such that

$$
||R(\lambda \pm i0)||_{\mathcal{X},\mathcal{X}^*} \leq b|\lambda|^{-\beta} \quad \text{for all } \lambda \in U, \ |\lambda| \geq \hat{\lambda}.
$$

So what about *f*-boundedness and the smooth method?

Definition

We say that an X-smooth operator *H* is of high-energy order β if there exist $\hat{\lambda}$, $b > 0$ such that

$$
||R(\lambda \pm i0)||_{\mathcal{X},\mathcal{X}^*} \leq b|\lambda|^{-\beta} \quad \text{for all } \lambda \in U, \ |\lambda| \geq \hat{\lambda}.
$$

Proposition

Let H_0, H_1 *be* X -smooth, and let $H_1 - H_0 \in \mathfrak{B}(\mathcal{X}^*, \mathcal{X})$. *Then H*⁰ *is of high-energy order* β *if and only if H*¹ *is.*

"High-energy order β " implies " f_β -boundedness".

• Here
$$
f_\beta(\lambda) = (1 + \lambda^2)^{\beta/2}, \beta \in (0, 1)
$$
.

Theorem

Let H_0, H_1 *be selfadjoint and* $H_1 - H_0 \in \Gamma_2(\mathcal{X}^*, \mathcal{X})$. *If* H_0 , H_1 *are* X -smooth and of high-energy order $\beta \in (0, 1)$, *then* H_0 *and* H_1 *are mutually f_β-bounded.*

- **•** This is "symmetric" in H_1 , H_0 .
- It is "effective" since smoothness and high-energy order need to be shown for one of H_0 , H_1 only (see earlier).
- Let us consider the following example:
	- $\mathcal{H} = L^2(\mathbb{R}^n, dx)$ $\mathcal{X} = L^2(\mathbb{R}^n, (1+|x|^2)^\alpha dx)$, where $\alpha > \frac{1}{2}$.
	- $H_0 = (-\Delta)^{\ell/2}$ with some $\ell \in (1, \infty)$
	- $H_1 = H_0 + V$ where *V* is a multiplication operator, $||V||_{\mathcal{X}^*,\mathcal{X}} < \infty$.
- One shows that H_0 is $\mathcal X$ -smooth and of high-energy order β for $0 < \beta \leq 1 \frac{1}{\ell}$.
- Also, $R_0(z)$ is compact in $\mathfrak{B}(\mathcal{X},\mathcal{X}^*)$ for $\mathsf{Im}\, z\neq 0.$
- Therefore, H_0 and H_1 are mutually f_β -bounded for all $0 < \beta \leq 1 \frac{1}{\ell}$.
- The bound on β is strict in general.

(Can construct counterexample for $n = 1$, $\ell = 2$, $\beta > \frac{1}{2}$.)

- We have investigated high-energy bounds on Møller operators in an abstract framework.
- These now allow to show stability of "quantum inequalities" under scattering.
- Concrete examples include $(-\Delta)^{\ell/2} + v(x)$ (in particular, Schrödinger in any dimension).
- We can also handle inner degrees of freedom:
	- \bullet Take $\mathcal{H} = \mathcal{H}_{tr} \otimes \mathcal{H}_{inner}$, $H_0 = H_{tr} \otimes 1 + 1 \otimes H_{inner}$, $H_1 = H_0 + v(x)$ where *v* is $\mathfrak{B}(\mathcal{H}_{\text{inner}})$ -valued.
	- Under some conditions, the high-energy order of *H*_{tr} transfers to *H*₀.
	- Easy if *H*_{inner} is finite-dimensional.
	- Intricate (but possible) if *H*_{inner} has discrete spectrum.
- Apart from the smooth method, we also get results in the trace-class method (not discussed here).
- On the theoretical side, one can make *f*-boundedness into an equivalence relation.
- **e** Extensions of these results?