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Content of the talk

@ For two selfadjoint operators Hy and Hy = Hy + V, consider the Mgaller operators

Qi = s-lim Mg o,
t—+oo

Heuristic expectation: At high energies (i.e., on subspaces for large spectral values of
Ho), one has Q1 ~ 1.

More precisely, we ask whether for some continuous function f,

1(€Q+ — 1)f(Ho)|| < oo

When does this happen? How fast can f grow?
How to find “effective” criteria for this bound to hold?

Motivating example from quantum physics: “quantum backflow”
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Motivating example

A motivating example from quantum mechanics:

@ Consider a free particle in one dimension, ¢ € L?(R)
@ Probability flux at point x, averaged with test function g > 0:
o J(g) = [ 9(x)J(x) = 3(Pg(X) + g(X)P)
o (1, J(x)¥) = 5 (V)Y (x) — &' (x)eb(x)).
@ Spectral values of the probability flux:
e J(g) has spectrum in all R.
o Let E be the projector onto positive momentum,
then EJ(g)E has spectrum in some interval [—¢, 00)
o Different from classical mechanics, it is not positive (“quantum backflow effect”)
e Instead, it is bounded below (“quantum inequality”; Eveson/Fewster/Verch '03).
e This is reminiscent of “quantum energy inequalities” in QFT.
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Quantum backflow and scattering

EJ(9)E is bounded below.
What happens when scattering is present?

e Is EQY J(9)Q2+ E bounded below?
197 J(9)Q2s = J()]| < 2[[(2+ = 1)*°(1 + H)2|L (1 + H) " 2u(g)]-

@ Hence the “quantum inequality” is stable under scattering if

(R = 1)*(1 + H)'/2|| < oc.
@ We showed this by a direct argument (B./C./L. 2017) for a wide class of potentials V.
@ But is there a general principle underlying?
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GIZMODO

Pushing Particles Forwards Might Make
Them Go Backwards Because Quantum
Physics Is Bonkers

“We wanted to show this is a universal quantum mechanical
e Ryan F. Mandelbaum effect,” study author i from the Technical
University of Munich in Germany told Gizmodo. “In the presence
CRAZY PHYSICS v~ or absence of a force, the particle will always have a probability to
move backward, even if there is a positive momentum.”

One of quantum mechanics’ core tenets is that the smallest
particles act like dots and flowing waves at the same time. That’s
demonstrated by a quintessential experiment: If you shoot



A more general setting — abstract scattering theory

Consider two selfadjoint operators Hy, H; on a Hilbert space H,
let P;’"C project onto their space of absolutely continuous spectrum,
and define the Mgller operators

Qi (Hy, Ho) : fthh g~ itho pac,

= s-lim e
t—+oo

(You may think Hy = Hy + V, but is that the right viewpoint?)
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A more general setting — abstract scattering theory

Consider two selfadjoint operators Hy, H; on a Hilbert space H,
let P;’"C project onto their space of absolutely continuous spectrum,
and define the Mgller operators

Qi (Hy, Ho) : fthh g~ itho pac,

= s-lim e
t—+oo

(You may think Hy = Hy + V, but is that the right viewpoint?)

Definition

Let Hp and H; be self-adjoint operators such that Q. (Hy, Hp) exist; let f € C(R).
Then (Hy, Hp) is called f-bounded if (Q4(Hy, Ho) — Pi°P§¢)f(Hp) is bounded.

Is this fulfilled in examples? Which f can be chosen?
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Some a priori examples

How strong is the condition of f-boundedness?
Example A: all f-bounds

@ Consider Hy = —i0y on H = L?(R), )
Hi = —idx + P¢ where P¢ projects onto some & with { compactly supported.
@ Inthat case, H; = Hy on subspaces of large momenta, and 2+ = 1 there.
@ Hence (24 — 1)f(Hp) is bounded no matter what f € C(R) we choose!
Example B: no f-bounds

@ Take Hy = —idy on H = L3(R), and H; = —idy + v(x) .

+oo
(Qe)(x) = wae()(x), wa(x):= expi/ v(y) dy.
e Let (U(p)v)(x) = eP*4p(x). Then U(p)Q+U(p)* = Q4 and
U(p)f(Ho)U(p)~" = f(Ho — p)-
@ Hence if (H;, Hp) was f-bounded, then (24 — 1)f(Ho — p) is uniformly bounded in p.
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Towards f-boundedness

How can we estimate (Q2+ — 1)f(Hp) in the general case?

@ We need a more explicit description of the Mgller operator.
@ For example, in terms of the resolvents Rj(z) = (H; — z1)™":

Qi(HhHo) /R1()\:|:I€)R0(>\:i:16) dl.

. €
= lim —

el0 T
Hence, at least formally,

Qi (Hy, Ho) — 1 = lim 6/ <R1()\ ¥ ie) — Ro(AF ie)) Ro(\ = i) d.

el0 T

@ To really obtain estimates here, we need more information about the limit values of the
resolvents at the real axis.

@ This is available in the smooth method of scattering theory.
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Smooth method

Smooth method of scattering theory:
@ Mostly applicable to differential operators and their perturbations.
@ Here the boundary values lim.jo R(\ + ie) are taken seriously
(“limiting absorption principle”).
@ Of course the limit does not exist in operator norm.
But consider the following well-known example:
o Hy=—-020onH = L%(R)
e Resolvent Ry(z) has integral kernel

i

K(x,y;2) = 2z P

o Ifa> 1, then (14 x2)~/2K(x, y; z)(1 + y?)~*/2 converges to a “good”
(Hilbert-Schmidt) kernel as Im z — 0+.

(iVzlx = yl).

@ That suggests the following framework.
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Setting of the smooth method

@ Consider a Gelfand triple X C ‘H C X™*.
e X aBanach space, X'* its conjugate dual
e Scalar product (-, -) on H yields H C X* via o — (-, ).
o Embeddings assumed continuous and dense.

@ Hj is called X'-smooth if

exist in B(X, X*) for A € U, where U is an open set of full measure, and the
extended Ry is locally Hélder continuous.
o If Ry(z) € FA(X, X*)for Imz # 0,and V € B(X*, X),
then Hy := Hy + V is also X-smooth (but U might change).
@ If Hy, Hy are both X'-smooth, and V := H; — Hy € Mo(X*, X)
then the Maller operators Q. (Hy, Hp) exist.
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High-energy behaviour in the smooth method

So what about f-boundedness and the smooth method?
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High-energy behaviour in the smooth method

So what about f-boundedness and the smooth method?

Definition

We say that an X’-smooth operator H is of high-energy order [ if there exist /A\, b > 0 such
that
|R(A £ i0)|| 2« < BA|TP forall A € U, |A| >\
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High-energy behaviour in the smooth method

So what about f-boundedness and the smooth method?

Definition

We say that an X’-smooth operator H is of high-energy order [ if there exist /A\, b > 0 such
that

IR\ + i0)[|x v+ < bIA|™# forall X e U, || > A

Proposition

Let Hy, H1 be X -smooth, and let Hy — Hy € B(X*, X).
Then Hy is of high-energy order (3 if and only if Hy is.

| \

\
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Main result

“High-energy order 3" implies “f3-boundedness”.
e Here f3(\) = (1 + \2)5/2, 3 € (0,1).

Let Hy, Hy be selfadjoint and Hy — Hy € rz(X*, X)
If Ho, Hy are X’-smooth and of high-energy order /3 € (0,1),
then Ho and H; are mutually f3-bounded.

@ This is “symmetric” in H;, Hp.

o ltis “effective” since smoothness and high-energy order need to be shown for one of
Ho, Hy only (see earlier).
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Example: Perturbed polyharmonic operator

Let us consider the following example:

H = L3(R", dx)

X = L[3(R", (1 + |x[*)*dx), where o > 1.

Hy = (—A)%/2 with some £ € (1, 00)

Hy = Hy + V where V is a multiplication operator, || V|| x+,x < 0.

One shows that Hy is X'-smooth and of high-energy order S for0 < 5 <1 — }
Also, Ry(z) is compact in B(X, X*) for Im z # 0.
Therefore, Hy and H; are mutually f3-bounded forall0 < 3 < 1 — 7.

The bound on j is strict in general.
(Can construct counterexample forn=1,¢ =2, 8 > %.)

Henning Bostelmann High-energy bounds on Maller operators



Conclusions

@ We have investigated high-energy bounds on Mgller operators in an abstract
framework.

@ These now allow to show stability of “quantum inequalities” under scattering.
o Concrete examples include (—A)%/2 4 v(x)

(in particular, Schrédinger in any dimension).
@ We can also handle inner degrees of freedom:

o Take H = Hy ® Hinner, Ho = Hy ® 1 4+ 1 @ Hiner,
H;y = Hy + v(x) where v is B(Hinner)-valued.
e Under some conditions, the high-energy order of H,, transfers to Hj.
o Easy if Hinner is finite-dimensional.
o Intricate (but possible) if Hi,ner has discrete spectrum.

@ Apart from the smooth method, we also get results in the trace-class method (not
discussed here).

@ On the theoretical side, one can make f-boundedness into an equivalence relation.
@ Extensions of these results?
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