High-energy bounds on Møller operators

Henning Bostelmann

University of York

LQP meeting, 18 June 2020

Joint work with D. Cadamuro (Leipzig) and G. Lechner (Cardiff), arXiv:1912.11092

• For two selfadjoint operators H_0 and $H_1 = H_0 + V$, consider the Møller operators

$$\Omega_{\pm} := \operatorname{s-lim}_{t o \pm \infty} e^{itH_1} e^{-itH_0}.$$

- Heuristic expectation: At high energies (i.e., on subspaces for large spectral values of H_0), one has $\Omega_{\pm} \approx 1$.
- More precisely, we ask whether for some continuous function *f*,

$$\|(\Omega_{\pm}-\mathbf{1})f(H_0)\|<\infty.$$

- When does this happen? How fast can f grow?
- How to find "effective" criteria for this bound to hold?
- Motivating example from quantum physics: "quantum backflow"

A motivating example from quantum mechanics:

- Consider a free particle in one dimension, $\psi \in L^2(\mathbb{R})$
- Probability flux at point *x*, averaged with test function $g \ge 0$:

•
$$J(g) = \int g(x)J(x) = \frac{1}{2}(Pg(X) + g(X)P)$$

- $\langle \psi, J(x)\psi \rangle = \frac{1}{2mi} (\overline{\psi(x)}\psi'(x) \overline{\psi'(x)}\psi(x)).$
- Spectral values of the probability flux:
 - J(g) has spectrum in all \mathbb{R} .
 - Let *E* be the projector onto positive momentum, then *EJ(g)E* has spectrum in some interval [−*ε*, ∞)
 - Different from classical mechanics, it is not positive ("quantum backflow effect")
 - Instead, it is bounded below ("quantum inequality"; Eveson/Fewster/Verch '03).
 - This is reminiscent of "quantum energy inequalities" in QFT.

EJ(g)E is bounded below. What happens when scattering is present?

• Is $E\Omega^*_{\pm}J(g)\Omega_{\pm}E$ bounded below?

 $\|\Omega^*_{\pm}J(g)\Omega_{\pm} - J(g)\| \leq 2\|(\Omega_{\pm} - 1)^*(1 + H)^{1/2}\| \|(1 + H)^{-1/2}J(g)\|.$

- Hence the "quantum inequality" is stable under scattering if $\|(\Omega_{\pm} 1)^*(1 + H)^{1/2}\| < \infty.$
- We showed this by a direct argument (B./C./L. 2017) for a wide class of potentials V.
- But is there a general principle underlying?

GIZMODO

Pushing Particles Forwards Might Make Them Go Backwards Because Quantum

Physics Is Bonkers

Ryan F. Mandelbaum 7/18/17 6:08pm

Filed to: CRAZY PHYSICS ~

"We wanted to show this is a universal quantum mechanical effect," study author Daniela Cadamuro from the Technical University of Munich in Germany told Gizmodo. "In the presence or absence of a force, the particle will always have a probability to move backward, even if there is a positive momentum."

One of quantum mechanics' core tenets is that the smallest particles act like dots and flowing waves at the same time. That's demonstrated by a quintessential experiment: If you shoot Consider two selfadjoint operators H_0 , H_1 on a Hilbert space \mathcal{H} , let $P_j^{\rm ac}$ project onto their space of absolutely continuous spectrum, and define the Møller operators

$$\Omega_{\pm}(H_1,H_0) := \underset{t \to \pm \infty}{\operatorname{s-lim}} e^{itH_1} e^{-itH_0} P_0^{\operatorname{ac}}.$$

(You may think $H_1 = H_0 + V$, but is that the right viewpoint?)

Consider two selfadjoint operators H_0 , H_1 on a Hilbert space \mathcal{H} , let $P_j^{\rm ac}$ project onto their space of absolutely continuous spectrum, and define the Møller operators

$$\Omega_{\pm}(H_1,H_0):= \underset{t\to\pm\infty}{\operatorname{s-lim}} e^{itH_1} e^{-itH_0} P_0^{\operatorname{ac}}.$$

(You may think $H_1 = H_0 + V$, but is that the right viewpoint?)

Definition

Let H_0 and H_1 be self-adjoint operators such that $\Omega_{\pm}(H_1, H_0)$ exist; let $f \in C(\mathbb{R})$. Then (H_1, H_0) is called *f*-bounded if $(\Omega_{\pm}(H_1, H_0) - P_1^{\mathrm{ac}} P_0^{\mathrm{ac}})f(H_0)$ is bounded.

Is this fulfilled in examples? Which *f* can be chosen?

How strong is the condition of *f*-boundedness? Example A: all *f*-bounds

• Consider $H_0 = -i\partial_x$ on $\mathcal{H} = L^2(\mathbb{R})$,

 $H_1 = -i\partial_x + P_{\xi}$ where P_{ξ} projects onto some ξ with $\tilde{\xi}$ compactly supported.

- In that case, $H_1 = H_0$ on subspaces of large momenta, and $\Omega_{\pm} = 1$ there.
- Hence $(\Omega_{\pm} \mathbf{1})f(H_0)$ is bounded no matter what $f \in C(\mathbb{R})$ we choose!

Example B: no f-bounds

• Take $H_0 = -i\partial_x$ on $\mathcal{H} = L^2(\mathbb{R})$, and $H_1 = -i\partial_x + v(x)$.

$$(\Omega_{\pm}\psi)(x) = w_{\pm}(x)\psi(x), \quad w_{\pm}(x) := \exp i \int_{x}^{\pm\infty} v(y) \, dy.$$

• Let $(U(p)\psi)(x) = e^{ipx}\psi(x)$. Then $U(p)\Omega_{\pm}U(p)^* = \Omega_{\pm}$ and $U(p)f(H_0)U(p)^{-1} = f(H_0 - p)$.

• Hence if (H_1, H_0) was *f*-bounded, then $(\Omega_{\pm} - \mathbf{1})f(H_0 - p)$ is uniformly bounded in *p*.

Towards *f*-boundedness

How can we estimate $(\Omega_{\pm} - \mathbf{1})f(H_0)$ in the general case?

- We need a more explicit description of the Møller operator.
- For example, in terms of the resolvents $R_j(z) = (H_j z\mathbf{1})^{-1}$:

$$\Omega_{\pm}(H_1, H_0) = \lim_{\epsilon \downarrow 0} \frac{\epsilon}{\pi} \int R_1(\lambda \mp i\epsilon) R_0(\lambda \pm i\epsilon) \ d\lambda.$$

Hence, at least formally,

$$\Omega_{\pm}(H_1,H_0) - \mathbf{1} = \lim_{\epsilon \downarrow 0} rac{\epsilon}{\pi} \int \left(R_1(\lambda \mp i\epsilon) - R_0(\lambda \mp i\epsilon)
ight) R_0(\lambda \pm i\epsilon) \ d\lambda.$$

- To really obtain estimates here, we need more information about the limit values of the resolvents at the real axis.
- This is available in the smooth method of scattering theory.

Smooth method

Smooth method of scattering theory:

- Mostly applicable to differential operators and their perturbations.
- Here the boundary values $\lim_{\epsilon \downarrow 0} R(\lambda \pm i\epsilon)$ are taken seriously ("limiting absorption principle").
- Of course the limit does not exist in operator norm. But consider the following well-known example:

•
$$H_0 = -\partial_x^2$$
 on $\mathcal{H} = L^2(\mathbb{R})$

• Resolvent $R_0(z)$ has integral kernel

$$K(x, y; z) = \frac{i}{2\sqrt{z}} \exp\left(i\sqrt{z}|x-y|\right).$$

- If $\alpha > \frac{1}{2}$, then $(1 + x^2)^{-\alpha/2} \mathcal{K}(x, y; z)(1 + y^2)^{-\alpha/2}$ converges to a "good" (Hilbert-Schmidt) kernel as Im $z \to 0+$.
- That suggests the following framework.

Setting of the smooth method

- Consider a Gelfand triple $\mathcal{X} \subset \mathcal{H} \subset \mathcal{X}^*$.
 - \mathcal{X} a Banach space, \mathcal{X}^* its conjugate dual
 - Scalar product $\langle \cdot, \cdot \rangle$ on \mathcal{H} yields $\mathcal{H} \subset \mathcal{X}^*$ via $\varphi \mapsto \langle \cdot, \varphi \rangle$.
 - Embeddings assumed continuous and dense.
- H_0 is called \mathcal{X} -smooth if

$$R_0(\lambda \pm i0) := \lim_{\epsilon \downarrow 0} R_0(\lambda \pm i\epsilon)$$

exist in $\mathfrak{B}(\mathcal{X}, \mathcal{X}^*)$ for $\lambda \in U$, where *U* is an open set of full measure, and the extended R_0 is locally Hölder continuous.

- If $R_0(z) \in FA(\mathcal{X}, \mathcal{X}^*)$ for $\text{Im } z \neq 0$, and $V \in \mathfrak{B}(\mathcal{X}^*, \mathcal{X})$, then $H_1 := H_0 + V$ is also \mathcal{X} -smooth (but U might change).
- If H_0 , H_1 are both \mathcal{X} -smooth, and $V := H_1 H_0 \in \Gamma_2(\mathcal{X}^*, \mathcal{X})$ then the Møller operators $\Omega_{\pm}(H_1, H_0)$ exist.

So what about *f*-boundedness and the smooth method?

So what about *f*-boundedness and the smooth method?

Definition

We say that an \mathcal{X} -smooth operator H is of high-energy order β if there exist $\hat{\lambda}, b > 0$ such that

$$\|R(\lambda \pm i0)\|_{\mathcal{X},\mathcal{X}^*} \leq b|\lambda|^{-eta}$$
 for all $\lambda \in U, \; |\lambda| \geq \hat{\lambda}.$

So what about *f*-boundedness and the smooth method?

Definition

We say that an \mathcal{X} -smooth operator H is of high-energy order β if there exist $\hat{\lambda}, b > 0$ such that

$$\| {\it R}(\lambda \pm {\it i} 0) \|_{{\cal X}, {\cal X}^*} \leq {\it b} |\lambda|^{-eta} \ \ \, {
m for all } \lambda \in {\it U}, \ |\lambda| \geq \hat{\lambda}.$$

Proposition

Let H_0 , H_1 be \mathcal{X} -smooth, and let $H_1 - H_0 \in \mathfrak{B}(\mathcal{X}^*, \mathcal{X})$. Then H_0 is of high-energy order β if and only if H_1 is. "High-energy order β " implies " f_{β} -boundedness".

• Here $f_{\beta}(\lambda) = (1 + \lambda^2)^{\beta/2}, \beta \in (0, 1).$

Theorem

Let H_0 , H_1 be selfadjoint and $H_1 - H_0 \in \Gamma_2(\mathcal{X}^*, \mathcal{X})$. If H_0 , H_1 are \mathcal{X} -smooth and of high-energy order $\beta \in (0, 1)$, then H_0 and H_1 are mutually f_β -bounded.

- This is "symmetric" in H_1 , H_0 .
- It is "effective" since smoothness and high-energy order need to be shown for one of H₀, H₁ only (see earlier).

Let us consider the following example:

•
$$\mathcal{H} = L^2(\mathbb{R}^n, dx)$$

- $\mathcal{X} = L^2(\mathbb{R}^n, (1+|x|^2)^{\alpha} dx)$, where $\alpha > \frac{1}{2}$.
- $H_0 = (-\Delta)^{\ell/2}$ with some $\ell \in (1,\infty)$
- $H_1 = H_0 + V$ where V is a multiplication operator, $\|V\|_{\mathcal{X}^*, \mathcal{X}} < \infty$.
- One shows that H_0 is \mathcal{X} -smooth and of high-energy order β for $0 < \beta \leq 1 \frac{1}{\ell}$.
- Also, $R_0(z)$ is compact in $\mathfrak{B}(\mathcal{X}, \mathcal{X}^*)$ for Im $z \neq 0$.
- Therefore, H_0 and H_1 are mutually f_β -bounded for all $0 < \beta \le 1 \frac{1}{\ell}$.
- The bound on β is strict in general.

(Can construct counterexample for $n = 1, \ell = 2, \beta > \frac{1}{2}$.)

- We have investigated high-energy bounds on Møller operators in an abstract framework.
- These now allow to show stability of "quantum inequalities" under scattering.
- Concrete examples include $(-\Delta)^{\ell/2} + v(x)$ (in particular, Schrödinger in any dimension).
- We can also handle inner degrees of freedom:
 - Take $\mathcal{H} = \mathcal{H}_{tr} \otimes \mathcal{H}_{inner}$, $H_0 = H_{tr} \otimes 1 + 1 \otimes H_{inner}$, $H_1 = H_0 + v(x)$ where v is $\mathfrak{B}(\mathcal{H}_{inner})$ -valued.
 - Under some conditions, the high-energy order of *H*_{tr} transfers to *H*₀.
 - Easy if *H*_{inner} is finite-dimensional.
 - Intricate (but possible) if *H*_{inner} has discrete spectrum.
- Apart from the smooth method, we also get results in the trace-class method (not discussed here).
- On the theoretical side, one can make *f*-boundedness into an equivalence relation.
- Extensions of these results?