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Content of the talk

For two selfadjoint operators H0 and H1 = H0 + V , consider the Møller operators

Ω± := s-lim
t→±∞

eitH1e−itH0 .

Heuristic expectation: At high energies (i.e., on subspaces for large spectral values of
H0), one has Ω± ≈ 1.

More precisely, we ask whether for some continuous function f ,

‖(Ω± − 1)f (H0)‖ <∞.

When does this happen? How fast can f grow?

How to find “effective” criteria for this bound to hold?

Motivating example from quantum physics: “quantum backflow”
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Motivating example

A motivating example from quantum mechanics:

Consider a free particle in one dimension, ψ ∈ L2(R)

Probability flux at point x , averaged with test function g ≥ 0:
J(g) =

∫
g(x)J(x) = 1

2 (Pg(X) + g(X)P)

〈ψ, J(x)ψ〉 = 1
2mi

(
ψ(x)ψ′(x)− ψ′(x)ψ(x)

)
.

Spectral values of the probability flux:
J(g) has spectrum in all R.
Let E be the projector onto positive momentum,
then EJ(g)E has spectrum in some interval [−ε,∞)
Different from classical mechanics, it is not positive (“quantum backflow effect”)
Instead, it is bounded below (“quantum inequality”; Eveson/Fewster/Verch ’03).
This is reminiscent of “quantum energy inequalities” in QFT.
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Quantum backflow and scattering

EJ(g)E is bounded below.
What happens when scattering is present?

Is EΩ∗±J(g)Ω±E bounded below?

‖Ω∗±J(g)Ω± − J(g)‖ ≤ 2‖(Ω± − 1)∗(1 + H)1/2‖ ‖(1 + H)−1/2J(g)‖.

Hence the “quantum inequality” is stable under scattering if
‖(Ω± − 1)∗(1 + H)1/2‖ <∞.

We showed this by a direct argument (B./C./L. 2017) for a wide class of potentials V .

But is there a general principle underlying?
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A more general setting – abstract scattering theory

Consider two selfadjoint operators H0, H1 on a Hilbert spaceH,
let Pac

j project onto their space of absolutely continuous spectrum,
and define the Møller operators

Ω±(H1,H0) := s-lim
t→±∞

eitH1e−itH0Pac
0 .

(You may think H1 = H0 + V , but is that the right viewpoint?)

Definition

Let H0 and H1 be self-adjoint operators such that Ω±(H1,H0) exist; let f ∈ C(R).
Then (H1,H0) is called f -bounded if (Ω±(H1,H0)− Pac

1 Pac
0 )f (H0) is bounded.

Is this fulfilled in examples? Which f can be chosen?

Henning Bostelmann High-energy bounds on Møller operators



A more general setting – abstract scattering theory

Consider two selfadjoint operators H0, H1 on a Hilbert spaceH,
let Pac

j project onto their space of absolutely continuous spectrum,
and define the Møller operators

Ω±(H1,H0) := s-lim
t→±∞

eitH1e−itH0Pac
0 .

(You may think H1 = H0 + V , but is that the right viewpoint?)

Definition

Let H0 and H1 be self-adjoint operators such that Ω±(H1,H0) exist; let f ∈ C(R).
Then (H1,H0) is called f -bounded if (Ω±(H1,H0)− Pac

1 Pac
0 )f (H0) is bounded.

Is this fulfilled in examples? Which f can be chosen?

Henning Bostelmann High-energy bounds on Møller operators



Some a priori examples

How strong is the condition of f -boundedness?
Example A: all f -bounds

Consider H0 = −i∂x onH = L2(R),
H1 = −i∂x + Pξ where Pξ projects onto some ξ with ξ̃ compactly supported.

In that case, H1 = H0 on subspaces of large momenta, and Ω± = 1 there.

Hence (Ω± − 1)f (H0) is bounded no matter what f ∈ C(R) we choose!

Example B: no f -bounds

Take H0 = −i∂x onH = L2(R), and H1 = −i∂x + v(x) .

(Ω±ψ)(x) = w±(x)ψ(x) , w±(x) := exp i
∫ ±∞

x
v(y) dy .

Let (U(p)ψ)(x) = eipxψ(x). Then U(p)Ω±U(p)∗ = Ω± and
U(p)f (H0)U(p)−1 = f (H0 − p).

Hence if (H1,H0) was f -bounded, then (Ω± − 1)f (H0 − p) is uniformly bounded in p.
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Towards f -boundedness

How can we estimate (Ω± − 1)f (H0) in the general case?

We need a more explicit description of the Møller operator.

For example, in terms of the resolvents Rj(z) = (Hj − z1)−1:

Ω±(H1,H0) = lim
ε↓0

ε

π

∫
R1(λ∓ iε)R0(λ± iε) dλ.

Hence, at least formally,

Ω±(H1,H0)− 1 = lim
ε↓0

ε

π

∫ (
R1(λ∓ iε)− R0(λ∓ iε)

)
R0(λ± iε) dλ.

To really obtain estimates here, we need more information about the limit values of the
resolvents at the real axis.

This is available in the smooth method of scattering theory.
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Smooth method

Smooth method of scattering theory:

Mostly applicable to differential operators and their perturbations.

Here the boundary values limε↓0 R(λ± iε) are taken seriously
(“limiting absorption principle”).

Of course the limit does not exist in operator norm.
But consider the following well-known example:

H0 = −∂2
x onH = L2(R)

Resolvent R0(z) has integral kernel

K (x , y ; z) =
i

2
√

z
exp

(
i
√

z|x − y |
)
.

If α > 1
2 , then (1 + x2)−α/2K (x , y ; z)(1 + y2)−α/2 converges to a “good”

(Hilbert-Schmidt) kernel as Im z → 0+.

That suggests the following framework.
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Setting of the smooth method

Consider a Gelfand triple X ⊂ H ⊂ X ∗.
X a Banach space, X ∗ its conjugate dual
Scalar product 〈 · , · 〉 onH yieldsH ⊂ X ∗ via ϕ 7→ 〈 · , ϕ〉.
Embeddings assumed continuous and dense.

H0 is called X -smooth if

R0(λ± i0) := lim
ε↓0

R0(λ± iε)

exist in B(X ,X ∗) for λ ∈ U, where U is an open set of full measure, and the
extended R0 is locally Hölder continuous.

If R0(z) ∈ FA(X ,X ∗) for Im z 6= 0, and V ∈ B(X ∗,X ),
then H1 := H0 + V is also X -smooth (but U might change).

If H0, H1 are both X -smooth, and V := H1 − H0 ∈ Γ2(X ∗,X )
then the Møller operators Ω±(H1,H0) exist.
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High-energy behaviour in the smooth method

So what about f -boundedness and the smooth method?

Definition

We say that an X -smooth operator H is of high-energy order β if there exist λ̂, b > 0 such
that

‖R(λ± i0)‖X ,X ∗ ≤ b|λ|−β for all λ ∈ U, |λ| ≥ λ̂.

Proposition

Let H0,H1 be X -smooth, and let H1 − H0 ∈ B(X ∗,X ).
Then H0 is of high-energy order β if and only if H1 is.

Henning Bostelmann High-energy bounds on Møller operators



High-energy behaviour in the smooth method

So what about f -boundedness and the smooth method?

Definition

We say that an X -smooth operator H is of high-energy order β if there exist λ̂, b > 0 such
that

‖R(λ± i0)‖X ,X ∗ ≤ b|λ|−β for all λ ∈ U, |λ| ≥ λ̂.

Proposition

Let H0,H1 be X -smooth, and let H1 − H0 ∈ B(X ∗,X ).
Then H0 is of high-energy order β if and only if H1 is.

Henning Bostelmann High-energy bounds on Møller operators



High-energy behaviour in the smooth method

So what about f -boundedness and the smooth method?

Definition

We say that an X -smooth operator H is of high-energy order β if there exist λ̂, b > 0 such
that

‖R(λ± i0)‖X ,X ∗ ≤ b|λ|−β for all λ ∈ U, |λ| ≥ λ̂.

Proposition

Let H0,H1 be X -smooth, and let H1 − H0 ∈ B(X ∗,X ).
Then H0 is of high-energy order β if and only if H1 is.

Henning Bostelmann High-energy bounds on Møller operators



Main result

“High-energy order β” implies “fβ-boundedness”.

Here fβ(λ) = (1 + λ2)β/2, β ∈ (0, 1).

Theorem
Let H0,H1 be selfadjoint and H1 − H0 ∈ Γ2(X ∗,X ).
If H0,H1 are X -smooth and of high-energy order β ∈ (0, 1),
then H0 and H1 are mutually fβ-bounded.

This is “symmetric” in H1, H0.

It is “effective” since smoothness and high-energy order need to be shown for one of
H0, H1 only (see earlier).
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Example: Perturbed polyharmonic operator

Let us consider the following example:
H = L2(Rn, dx)
X = L2(Rn, (1 + |x |2)αdx), where α > 1

2 .
H0 = (−∆)`/2 with some ` ∈ (1,∞)
H1 = H0 + V where V is a multiplication operator, ‖V‖X∗,X <∞.

One shows that H0 is X -smooth and of high-energy order β for 0 < β ≤ 1− 1
` .

Also, R0(z) is compact in B(X ,X ∗) for Im z 6= 0.

Therefore, H0 and H1 are mutually fβ-bounded for all 0 < β ≤ 1− 1
` .

The bound on β is strict in general.
(Can construct counterexample for n = 1, ` = 2, β > 1

2 .)
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Conclusions

We have investigated high-energy bounds on Møller operators in an abstract
framework.

These now allow to show stability of “quantum inequalities” under scattering.

Concrete examples include (−∆)`/2 + v(x)
(in particular, Schrödinger in any dimension).
We can also handle inner degrees of freedom:

TakeH = Htr ⊗Hinner, H0 = Htr ⊗ 1 + 1⊗ Hinner,
H1 = H0 + v(x) where v is B(Hinner)-valued.
Under some conditions, the high-energy order of Htr transfers to H0.
Easy if Hinner is finite-dimensional.
Intricate (but possible) if Hinner has discrete spectrum.

Apart from the smooth method, we also get results in the trace-class method (not
discussed here).

On the theoretical side, one can make f -boundedness into an equivalence relation.

Extensions of these results?
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