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Determinism

I A field φ subject to a hyperbolic field equation,
e.g. (�− µ2)φ = 0, is determined by initial data
on S within the domain of dependence D+(S).

I Values beyond the Cauchy horizon CH(S) not
determined.

I The strong cosmic censorship (sCC) conjecture
asserts that determinism generically holds in
GR, given initial data which is, in a suitable
sense, complete (e.g., asymptotically flat).

I Cauchy horizons should be generically singular,
so that no observer may cross them.
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Challenges to sCC: Reissner-Nordström spacetime

I Reissner-Nordström spacetime (RN) has a regular
Cauchy horizon CHR , beyond which a field φ is
not determined by its data on a Cauchy surface Σ.

I What happens to the imprudent observer Bob who
falls into the black hole and reaches CHR in finite
proper time?

I Alice, who does not enter the black hole, sends
periodic signals to Bob. She needs ∞ proper time
to reach i+, so she may send ∞ many of those.
As Bob receives them in finite proper time, the
frequency diverges as he approaches CHR .

I For generic perturbations of fields on RN one
expects a divergence of the stress tensor and thus
the curvature as CHR is approached [Penrose 1974].

I Christodoulou formulation: sCC holds if generically
φ 6∈ H1

loc near CHR , i.e., divergence at least as

TVV ∼ V−1.
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Challenges to sCC: Reissner-Nordström-deSitter spacetime

I With a positive cosmological constant Λ,
the blue-shift of the frequency is counter-
acted by the cosmological expansion, so
that [Hintz & Vasy 2017]

φ ∈ H
1
2

+β

loc , TVV ∼ (−V )−2+2β

with

β =
α

κ−
=

spectral gap of QNMs

surface gravity at CH

on Reissner-Nordström-deSitter (RNdS).

I Near extremal RNdS, scalar fields: β > 1
2

[Cardoso et al 2017], [Dias et al 2018].

I Near extremal RNdS, linearized Einstein-Maxwell: β > 2 [Dias at al 2018].

I sCC violated on RNdS (but not on Kerr-dS [Dias et al 2018]).

I We find that on RNdS, in any state Ψ which is Hadamard around Σ,

〈TVV 〉Ψ ∼ CV−2

near CHR with C generically non-vanishing and state-independent.

I sCC rescued by quantum effects.
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RNdS spacetime

I Metric given by

g = −f (r)dt2 + f (r)−1dr 2 + r 2dΩ2,

f (r) = 1− 2M

r
+

Q2

r 2
− Λ

3
r 2,

I Roots 0 < r− < r+ < rc of f are the Cauchy, event, cosmological horizon.

I The corresponding surface gravities are κi = 1
2
|f ′(ri )| for i ∈ {−,+, c}.

I Introduce radial null coordinates u, v such that

g = −f (r)dudv + r 2dΩ2.

I In Kruskal coordinates U, V , Vc , we can

extend the metric analytically over HR ,
CHR , and HL
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The 2d case

I 2d toy model in which the angular directions
are suppressed: g = −f (r)dudv .

I Classically, stress tensor conserved and trace-
less, so ∂uTvv = 0, implying that

TVV (U, v) = TVcVc (U0, v)
κ2
c

κ2
−

(−V )−2+2κc/κ− .

I If field is regular at HL
c , then generically singular at CHR .

I Exponent dependent on spacetime parameters, coefficient state-dependent.

I For a quantum field, trace anomaly: T = aR.

I Integration of ∂u〈Tvv 〉Ψ now yields, near CHR
[Birrell & Davies 1978]

〈TVV 〉Ψ = a
2
(κ2

c/κ
2
− − 1)︸ ︷︷ ︸

C

V−2 +O((−V )−2+2κc/κ−)

I Power law singularity at CHR , exponent universal, coefficient C dependent
on spacetime parameters and state-independent.

I C 6= 0 up to special spacetime parameters and both signs possible.
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The 4d case

I In 4d, trace anomaly and conservation are
not sufficient to integrate the stress ten-
sor: Unknown state-dependent tangential
pressures enter [Birrell & Davies 1978].

I We define a stationary Unruh state 〈·〉U, which is
Hadamard in I ∪ II ∪ III, and a stationary com-
parison state 〈·〉C, which is Hadamard in II∪ IV.

I To investigate the divergence of the stress tensor near CHR , we compute

〈TVV 〉Ψ = 〈TVV 〉Ψ − 〈TVV 〉U + 〈TVV 〉U − 〈TVV 〉C + 〈TVV 〉C

Can be controlled
using results for
the classical case.
Yields ∼ (−V )−2+2β .

Can be evaluated
numerically.
Yields ∼ CV−2.

Regular
across CHR
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〈TVV 〉Ψ − 〈TVV 〉U

I 〈·〉U defined as the vacuum w.r.t. to the Unruh
modes [Hawking 1975, Unruh 1976]

Ψin
k`m ∼ Y`m(θ, φ)e−ikVc on H−c ∩HR

c

Ψup
k`m ∼ Y`m(θ, φ)e−ikU on H− ∩HL

I Well-definedness and Hadamard property from
propagation of singularities and decay
properties on RNdS [Hintz & Vasy 2017] similarly to
Schwarzschild case [Dappiaggi, Moretti, Pinamonti 2011].
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[Verch 1994]
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W (x , x ′) = 〈φ(x)φ(x ′)〉Ψ − 〈φ(x)φ(x ′)〉U
smooth in I ∪ II ∪ III.

W (x , x ′) =
∑

j ±ψ̄j(x)ψj(x
′)

(�− µ2)ψj = bj ∈ C∞0 (O)∑
j ‖bj‖

2
Cm <∞ ∀m

Decay estimates [Hintz & Vasy 2017]

and Sobolev embedding thms:
‖tµν(−, y)‖Lp(R−) .

∑
j ‖bj‖

2
Cm

for 1/p > 2− 2β with β > 1
2
. 〈TVV 〉Ψ − 〈TVV 〉U . (−V )−2+2β .



〈TVV 〉U − 〈TVV 〉C

I 〈·〉C as the vacuum state w.r.t. Unruh modes on CHL ∪ CH+.

I Is Hadamard in II ∪ IV.

I Compute C̃ = 〈Tvv 〉U − 〈Tvv 〉C on CHL:

C̃ ∼
∑
`

(2`+ 1)

∫ ∞
0

dω ωn`(ω).

I The “density of states” n`(ω) expressable in terms
of transmission and reflection coefficients Tω`, Rω`
for Boulware modes e−iωu. Must be computed
numerically.

I By stationarity, we have the same value on CHR , so

〈TVV 〉U − 〈TVV 〉C ∼ C̃κ−2
− V−2.

I Generically C̃ 6= 0, both signs possible.

I Compatible with results on RN [Zilberman et al 2019].
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[Hollands, Klein, Z. 2020]



Conclusion

I Strong quantum effects near the Cauchy horizon inside BHs!

I Global effect!

I RVV ∼ CV−2 corresponds to strong curvature singularity [Tipler 1977].

I Area spanned by spacelike Jacobi vector fields Z along light-like geodesic
γ approaching CH vanishes (C > 0) or diverges (C < 0) on CH.

I Infinite crushing (C > 0) or stretching (C < 0) of observer.
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