Strong Cosmic Censorship and Quantum Fields

Jochen Zahn

UNIVERSITAT LEIPZIG

based on arXiv:1912.06047 [with S. Hollands & R.M. Wald] 1st virtual LQP workshop, June 2020

Determinism

- A field ϕ subject to a hyperbolic field equation, e.g. $(\Box - \mu^2) \phi = 0$, is determined by initial data on S within the domain of dependence $D^{+}(S).$
- \triangleright Values beyond the Cauchy horizon $CH(S)$ not determined.
- \blacktriangleright The strong cosmic censorship (sCC) conjecture asserts that determinism generically holds in GR, given initial data which is, in a suitable sense, complete (e.g., asymptotically flat).
- \triangleright Cauchy horizons should be generically singular, so that no observer may cross them.

► Reissner-Nordström spacetime (RN) has a regular Cauchy horizon \mathcal{CH}^R , beyond which a field ϕ is not determined by its data on a Cauchy surface $Σ$.

- \triangleright Reissner-Nordström spacetime (RN) has a regular Cauchy horizon \mathcal{CH}^R , beyond which a field ϕ is not determined by its data on a Cauchy surface $Σ$.
- \triangleright What happens to the imprudent observer Bob who falls into the black hole and reaches $\mathcal{CH}^{\mathcal{R}}$ in finite proper time?

- \triangleright Reissner-Nordström spacetime (RN) has a regular Cauchy horizon \mathcal{CH}^R , beyond which a field ϕ is not determined by its data on a Cauchy surface Σ .
- \triangleright What happens to the imprudent observer Bob who falls into the black hole and reaches $\mathcal{CH}^{\mathcal{R}}$ in finite proper time?
- \blacktriangleright Alice, who does not enter the black hole, sends periodic signals to Bob. She needs ∞ proper time to reach i^+ , so she may send ∞ many of those. As Bob receives them in finite proper time, the frequency diverges as he approaches $\mathcal{CH}^R.$
- \triangleright For generic perturbations of fields on RN one expects a divergence of the stress tensor and thus the curvature as $\mathcal{CH}^{\mathcal{R}}$ is approached [Penrose 1974].

- \triangleright Reissner-Nordström spacetime (RN) has a regular Cauchy horizon \mathcal{CH}^R , beyond which a field ϕ is not determined by its data on a Cauchy surface $Σ$.
- \triangleright What happens to the imprudent observer Bob who falls into the black hole and reaches $\mathcal{CH}^{\mathcal{R}}$ in finite proper time?
- \blacktriangleright Alice, who does not enter the black hole, sends periodic signals to Bob. She needs ∞ proper time to reach i^+ , so she may send ∞ many of those. As Bob receives them in finite proper time, the frequency diverges as he approaches $\mathcal{CH}^R.$
- \triangleright For generic perturbations of fields on RN one expects a divergence of the stress tensor and thus the curvature as $\mathcal{CH}^{\mathcal{R}}$ is approached [Penrose 1974].
- \triangleright Christodoulou formulation: sCC holds if generically $\phi \not\in \mathcal{H}^1_{\mathrm{loc}}$ near $\mathcal{CH}^{\mathcal{R}}$, i.e., divergence at least as

V 0 IV CH^R +i II B HR I + ^H[−] ^H^L A I −I

$$
T_{VV}\sim V^{-1}.
$$

 \triangleright With a positive cosmological constant Λ, the blue-shift of the frequency is counteracted by the cosmological expansion, so that [Hintz & Vasy 2017]

$$
\phi \in H^{\frac{1}{2}+\beta}_{\text{loc}}, \qquad T_{VV} \sim (-V)^{-2+2\beta}
$$

with

$$
\beta = \frac{\alpha}{\kappa_-} = \frac{\text{spectral gap of QNMs}}{\text{surface gravity at } \mathcal{CH}}
$$

on Reissner-Nordström-deSitter (RNdS).

- ► Near extremal RNdS, scalar fields: $\beta > \frac{1}{2}$ [Cardoso et al 2017], [Dias et al 2018].
- **►** Near extremal RNdS, linearized Einstein-Maxwell: $\beta > 2$ [Dias at al 2018].
- \triangleright sCC violated on RNdS (but not on Kerr-dS [Dias et al 2018]).

 \triangleright With a positive cosmological constant Λ, the blue-shift of the frequency is counteracted by the cosmological expansion, so that [Hintz & Vasy 2017]

$$
\phi \in H^{\frac{1}{2}+\beta}_{\text{loc}}, \qquad T_{VV} \sim (-V)^{-2+2\beta}
$$

with

$$
\beta = \frac{\alpha}{\kappa_-} = \frac{\text{spectral gap of QNMs}}{\text{surface gravity at } \mathcal{CH}}
$$

on Reissner-Nordström-deSitter (RNdS).

- ► Near extremal RNdS, scalar fields: $\beta > \frac{1}{2}$ [Cardoso et al 2017], [Dias et al 2018].
- **►** Near extremal RNdS, linearized Einstein-Maxwell: $\beta > 2$ [Dias at al 2018].
- \triangleright sCC violated on RNdS (but not on Kerr-dS [Dias et al 2018]).
- \triangleright We find that on RNdS, in any state Ψ which is Hadamard around Σ ,

$$
\langle\,T_{VV}\rangle_\Psi\sim\,CV^{-2}
$$

near \mathcal{CH}^{R} with C generically non-vanishing and state-independent.

 \triangleright sCC rescued by quantum effects.

RNdS spacetime

 \triangleright Metric given by

$$
g = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2},
$$

$$
f(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}} - \frac{\Lambda}{3}r^{2},
$$

► Roots $0 < r_{-} < r_{+} < r_{c}$ of f are the Cauchy, event, cosmological horizon.

► The corresponding surface gravities are $\kappa_i = \frac{1}{2} |f'(r_i)|$ for $i \in \{-, +, c\}$.

RNdS spacetime

 \blacktriangleright Metric given by

$$
g = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2},
$$

$$
f(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}} - \frac{\Lambda}{3}r^{2},
$$

► Roots $0 < r_{-} < r_{+} < r_{c}$ of f are the Cauchy, event, cosmological horizon.

- ► The corresponding surface gravities are $\kappa_i = \frac{1}{2} |f'(r_i)|$ for $i \in \{-, +, c\}$.
- Introduce radial null coordinates u , v such that

$$
g = -f(r)dudv + r^2d\Omega^2.
$$

RNdS spacetime

 \triangleright Metric given by

$$
g = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2},
$$

$$
f(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}} - \frac{\Lambda}{3}r^{2},
$$

► Roots $0 < r_{-} < r_{+} < r_{c}$ of f are the Cauchy, event, cosmological horizon.

- ► The corresponding surface gravities are $\kappa_i = \frac{1}{2} |f'(r_i)|$ for $i \in \{-, +, c\}$.
- Introduce radial null coordinates u , v such that

$$
g=-f(r)\mathrm{d}u\mathrm{d}v+r^2\mathrm{d}\Omega^2.
$$

In Kruskal coordinates U , V , V_c , we can extend the metric analytically over \mathcal{H}^R , \mathcal{CH}^R , and \mathcal{H}_c^L .

The 2d case

- \triangleright 2d toy model in which the angular directions are suppressed: $g = -f(r) \mathrm{d}u \mathrm{d}v$.
- \blacktriangleright Classically, stress tensor conserved and traceless, so $\partial_u T_{vv} = 0$, implying that

$$
T_{VV}(U,v) = T_{V_cV_c}(U_0,v)\frac{\kappa_c^2}{\kappa_-^2}(-V)^{-2+2\kappa_c/\kappa_-}.
$$

- If field is regular at \mathcal{H}_c^L , then generically singular at \mathcal{CH}^R .
- \blacktriangleright Exponent dependent on spacetime parameters, coefficient state-dependent.

The 2d case

- \triangleright 2d toy model in which the angular directions are suppressed: $g = -f(r) \mathrm{d} u \mathrm{d} v$.
- \blacktriangleright Classically, stress tensor conserved and traceless, so $\partial_u T_w = 0$, implying that

$$
T_{VV}(U,v) = T_{V_cV_c}(U_0,v)\frac{\kappa_c^2}{\kappa_-^2}(-V)^{-2+2\kappa_c/\kappa_-}.
$$

- nd Hall ∕∿ົ c $\tilde{\gamma}_\text{C}$ λ , c RSz. cx $T_{vv}(U_0, v)$ $\mathcal{T}_{\mathsf{vv}}(U,\mathsf{v})$
- If field is regular at \mathcal{H}_c^L , then generically singular at \mathcal{CH}^R .
- \blacktriangleright Exponent dependent on spacetime parameters, coefficient state-dependent.
- For a quantum field, trace anomaly: $T = aR$.
- ► Integration of $\partial_u\langle T_{vv}\rangle$ v, now yields, near \mathcal{CH}^R [Birrell & Davies 1978]

$$
\langle T_{VV} \rangle_{\Psi} = \underbrace{\frac{a}{2} (\kappa_c^2/\kappa_-^2 - 1)}_C V^{-2} + \mathcal{O}((-V)^{-2+2\kappa_c/\kappa_-})
$$

- \blacktriangleright Power law singularity at \mathcal{CH}^R , exponent universal, coefficient C dependent on spacetime parameters and state-independent.
- \triangleright $C \neq 0$ up to special spacetime parameters and both signs possible.

The 4d case

- \blacktriangleright In 4d, trace anomaly and conservation are not sufficient to integrate the stress tensor: Unknown state-dependent tangential pressures enter [Birrell & Davies 1978].
- \triangleright We define a stationary Unruh state $\langle \cdot \rangle_{U}$, which is Hadamard in I∪II ∪III, and a stationary comparison state $\langle \cdot \rangle_C$, which is Hadamard in II ∪IV. $\frac{f}{h}$ is $\frac{f}{h}$

$$
\langle T_{VV} \rangle_{\Psi} = \langle T_{VV} \rangle_{\Psi} - \langle T_{VV} \rangle_{\text{U}} + \langle T_{VV} \rangle_{\text{U}} - \langle T_{VV} \rangle_{\text{C}} + \langle T_{VV} \rangle_{\text{C}}
$$
\n
\nCan be controlled\n
\nusing results for\n
\nthe classical case.\n
\nYields $\sim CV^{-2}$.\n
\nYields $\sim CV^{-2}$.

∕∿ົ c

c

X,

II

cti

ch

R

Sz.,

IV

Σ

i +

I

−

そ、 Ⅲ

HR c

$\langle T_{VV} \rangle_{\Psi} - \langle T_{VV} \rangle_{\text{U}}$

 \blacktriangleright $\langle \cdot \rangle_{\text{U}}$ defined as the vacuum w.r.t. to the Unruh modes [Hawking 1975, Unruh 1976]

$$
\begin{aligned}\n\Psi_{k\ell m}^{\text{in}} &\sim Y_{\ell m}(\theta,\phi)e^{-ikV_c} & \text{on } \mathcal{H}_c^- \cap \mathcal{H}_c^R \\
\Psi_{k\ell m}^{\text{up}} &\sim Y_{\ell m}(\theta,\phi)e^{-ikU} & \text{on } \mathcal{H}^- \cap \mathcal{H}^L\n\end{aligned}
$$

 \triangleright Well-definedness and Hadamard property from propagation of singularities and decay properties on RNdS [Hintz & Vasy 2017] similarly to Schwarzschild case [Dappiaggi, Moretti, Pinamonti 2011].

$\langle T_{VV} \rangle_{\Psi} - \langle T_{VV} \rangle_{\text{U}}$

 \blacktriangleright $\langle \cdot \rangle_{\text{U}}$ defined as the vacuum w.r.t. to the Unruh modes [Hawking 1975, Unruh 1976]

$$
\Psi_{k\ell m}^{\text{in}} \sim Y_{\ell m}(\theta, \phi) e^{-ikV_c} \qquad \text{on } \mathcal{H}_c^- \cap \mathcal{H}_c^R
$$

$$
\Psi_{k\ell m}^{\text{up}} \sim Y_{\ell m}(\theta, \phi) e^{-ikU} \qquad \text{on } \mathcal{H}^- \cap \mathcal{H}^L
$$

 \triangleright Well-definedness and Hadamard property from propagation of singularities and decay properties on RNdS [Hintz & Vasy 2017] similarly to Schwarzschild case [Dappiaggi, Moretti, Pinamonti 2011].

$$
W(x, x') = \langle \phi(x)\phi(x')\rangle \psi - \langle \phi(x)\phi(x')\rangle \psi
$$
\nsmooth in I \cup II \cup III.
\n
$$
W(x, x') = \sum_{j} \pm \bar{\psi}_{j}(x)\psi_{j}(x')
$$
\n
$$
C = \mu^{2}\psi_{j} = b_{j} \in C_{0}^{\infty}(\mathcal{O})
$$
\nand Sobolev embedding thms:
\n
$$
||t_{\mu\nu}(-, y)||_{L^{p}(\mathbb{R}_{-})} \lesssim \sum_{j} ||b_{j}||_{C^{m}}^{2}
$$
\nfor $1/p > 2 - 2\beta$ with $\beta > \frac{1}{2}$.
\n
$$
||t_{\mu\nu}(\mathcal{O}_{\nu})||_{L^{p}(\mathbb{R}_{-})} \lesssim \sum_{j} ||b_{j}||_{C^{m}}^{2}
$$
\n
$$
||t_{\mu\nu}(\mathcal{O}_{\nu})||_{L^{p}(\mathbb{R}_{-})} \lesssim \sum_{j} ||b_{j}||_{C^{m}}^{2}
$$
\n
$$
||t_{\mu\nu}(\mathcal{O}_{\nu})||_{L^{p}(\mathbb{R}_{-})} \lesssim \sum_{j} ||b_{j}||_{C^{m}}^{2}
$$

$\langle T_{VV} \rangle_U - \langle T_{VV} \rangle_C$

- ► $\langle \cdot \rangle_{\rm C}$ as the vacuum state w.r.t. Unruh modes on ${\cal CH}^{\rm L} \cup {\cal CH}^{\rm +}.$
- ► Is Hadamard in II \cup IV.

$\langle T_{VV} \rangle_{\rm U} - \langle T_{VV} \rangle_{\rm C}$

- ► $\langle \cdot \rangle_{\rm C}$ as the vacuum state w.r.t. Unruh modes on ${\cal CH}^{\rm L} \cup {\cal CH}^{\rm +}.$
- ► Is Hadamard in II \cup IV.
- ► Compute $\tilde{C} = \langle T_{\nu\nu}\rangle_{\rm U} \langle T_{\nu\nu}\rangle_{\rm C}$ on ${\cal C}{\cal H}^L$:

$$
\tilde{C} \sim \sum_{\ell} (2\ell+1) \int_0^\infty \mathrm{d} \omega \; \omega \, n_{\ell}(\omega).
$$

- The "density of states" $n_{\ell}(\omega)$ expressable in terms of transmission and reflection coefficients $\mathcal{T}_{\omega\ell}, \mathcal{R}_{\omega\ell}$ for Boulware modes $e^{-i\omega u}$. Must be computed numerically.
- \blacktriangleright By stationarity, we have the same value on \mathcal{CH}^{R} , so

$$
\langle \textit{T}_{VV} \rangle_{\rm U} - \langle \textit{T}_{VV} \rangle_{\rm C} \sim \tilde{C} \kappa_{-}^{-2} V^{-2}.
$$

$\langle T_{VV} \rangle_{\rm U} - \langle T_{VV} \rangle_{\rm C}$

- ► $\langle \cdot \rangle_{\rm C}$ as the vacuum state w.r.t. Unruh modes on ${\cal CH}^{\rm L} \cup {\cal CH}^{\rm +}.$
- ► Is Hadamard in II \cup IV.
- ► Compute $\tilde{C} = \langle T_{\nu\nu}\rangle_{\rm U} \langle T_{\nu\nu}\rangle_{\rm C}$ on ${\cal C}{\cal H}^L$:

$$
\tilde{C} \sim \sum_{\ell} (2\ell+1) \int_0^\infty \mathrm{d} \omega \; \omega \, n_{\ell}(\omega).
$$

- The "density of states" $n_{\ell}(\omega)$ expressable in terms of transmission and reflection coefficients $\mathcal{T}_{\omega\ell}$, $\mathcal{R}_{\omega\ell}$ for Boulware modes $e^{-i\omega u}$. Must be computed numerically.
- \blacktriangleright By stationarity, we have the same value on \mathcal{CH}^{R} , so

$$
\langle T_{VV} \rangle_{\rm U} - \langle T_{VV} \rangle_{\rm C} \sim \tilde{C} \kappa_-^{-2} V^{-2}.
$$

- Generically $\tilde{C} \neq 0$, both signs possible.
- \triangleright Compatible with results on RN [Zilberman et al 2019].

[Hollands, Klein, Z. 2020]

Conclusion

- \triangleright Strong quantum effects near the Cauchy horizon inside BHs!
- \blacktriangleright Global effect!

Conclusion

- \triangleright Strong quantum effects near the Cauchy horizon inside BHs!
- \blacktriangleright Global effect!
- ► $R_{VV} \sim CV^{-2}$ corresponds to strong curvature singularity [Tipler 1977].
- Area spanned by spacelike Jacobi vector fields Z along light-like geodesic γ approaching \mathcal{CH} vanishes $(C > 0)$ or diverges $(C < 0)$ on \mathcal{CH} .
- Infinite crushing $(C > 0)$ or stretching $(C < 0)$ of observer.

Conclusion

- \triangleright Strong quantum effects near the Cauchy horizon inside BHs!
- \blacktriangleright Global effect!
- ► $R_{VV} \sim CV^{-2}$ corresponds to strong curvature singularity [Tipler 1977].
- Area spanned by spacelike Jacobi vector fields Z along light-like geodesic γ approaching CH vanishes $(C > 0)$ or diverges $(C < 0)$ on CH .
- Infinite crushing $(C > 0)$ or stretching $(C < 0)$ of observer.

THANK YOU FOR YOUR ATTENTION!