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Determinism

v

A field ¢ subject to a hyperbolic field equation,
e.g. (O—p?)¢ =0, is determined by initial data
on S within the domain of dependence D¥(S).

Values beyond the Cauchy horizon CH(S) not
determined.

The strong cosmic censorship (sCC) conjecture
asserts that determinism generically holds in
GR, given initial data which is, in a suitable
sense, complete (e.g., asymptotically flat).

Cauchy horizons should be generically singular,
so that no observer may cross them.

Each past
inextendible
causal curve
emanating
from x hits S.
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> Alice, who does not enter the black hole, sends
periodic signals to Bob. She needs oo proper time
to reach i, so she may send co many of those.
As Bob receives them in finite proper time, the
frequency diverges as he approaches CHF.

» For generic perturbations of fields on RN one
expects a divergence of the stress tensor and thus
the curvature as CHF is approached [Penrose 1974].
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> Alice, who does not enter the black hole, sends
periodic signals to Bob. She needs oo proper time
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As Bob receives them in finite proper time, the
frequency diverges as he approaches CHR.

» For generic perturbations of fields on RN one
expects a divergence of the stress tensor and thus
the curvature as CHF is approached [Penrose 1974].

» Christodoulou formulation: sCC holds if generically
¢ & HL_ near CHF, i.e., divergence at least as

Tw ~ V7L



Challenges to sCC: Reissner-Nordstrom-deSitter spacetime

» With a positive cosmological constant A,
the blue-shift of the frequency is counter-
acted by the cosmological expansion, so
that [Hintz & Vasy 2017]

1

pe’  Tw~(-V)
with

5= o _ spectral gap of QNMs

K— surface gravity at CH

on Reissner-Nordstrom-deSitter (RNdS).
» Near extremal RNdS, scalar fields: 5 > % [Cardoso et al 2017], [Dias et al 2018].
> Near extremal RNdS, linearized Einstein-Maxwell: 8 > 2 [Dias at al 2018].
» sCC violated on RNdS (but not on Kerr-dS [pias et al 2018]).
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1
d) c H2+5 TVV ~ (7\/)724»25

loc
with

5= o _ spectral gap of QNMs
" k_  surface gravity at CH A

on Reissner-Nordstrom-deSitter (RNdS).
» Near extremal RNdS, scalar fields: 5 > % [Cardoso et al 2017], [Dias et al 2018].
> Near extremal RNdS, linearized Einstein-Maxwell: 8 > 2 [Dias at al 2018].
» sCC violated on RNdS (but not on Kerr-dS [pias et al 2018]).
» We find that on RNdS, in any state W which is Hadamard around %,

(Tw)w ~ CV 2

near CH® with C generically non-vanishing and state-independent.

» sCC rescued by quantum effects.



RNdS spacetime

> Metric given by
f(r)de® + f(r)~'dr? + dQ?,
2M @R* A,

f=1-""+"7 -3

&=

» Roots 0 < r— < ry < rc of f are the Cauchy, event, cosmological horizon.
= 2|f'(ri)| for i € {—,+,c}.

» The corresponding surface gravities are k;
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RNdS spacetime

> Metric given by
g = —f(r)dt’ + £(r)"'dr’ 4 r?dQ?,

L 2M Q7 A,
f(r)fl—T—F?—gr,

Roots 0 < r— < ry < rc of f are the Cauchy, event, cosmological horizon.

v

> The corresponding surface gravities are x; = 3|f'(r)| for i € {—, +,c}.

Introduce radial null coordinates u, v such that

v

g = —f(r)dudv + rPdQ°.

In Kruskal coordinates U, V, V., we can

extend the metric analytically over #HF,
CHF, and HL.

v




The 2d case

> 2d toy model in which the angular directions
are suppressed: g = —f(r)dudv.

» Classically, stress tensor conserved and trace-
less, so O, Ty = 0, implying that

2
T (U, v) = Tvov(Uo, v) o5 (= V) 2020/

> If field is regular at 7., then generically singular at CHR.

» Exponent dependent on spacetime parameters, coefficient state-dependent.
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2d toy model in which the angular directions
are suppressed: g = —f(r)dudv.

Classically, stress tensor conserved and trace-
less, so O, Ty = 0, implying that

2
T (U, v) = Tvov(Uo, v) o5 (= V) 2020/

If field is regular at 7L, then generically singular at CHR.
Exponent dependent on spacetime parameters, coefficient state-dependent.
For a quantum field, trace anomaly: T = aR.

Integration of 9,(T.)w now yields, near CHR [Birrell & Davies 1078]

(Tw)w = 2(K2/K2 — 1) V24 O((— V) 212re/nm)

|

Power law singularity at CHF, exponent universal, coefficient C dependent
on spacetime parameters and state-independent.

C # 0 up to special spacetime parameters and both signs possible.



The 4d case

> In 4d, trace anomaly and conservation are
not sufficient to integrate the stress ten-
sor: Unknown state-dependent tangential
pressures enter [Birrell & Davies 1978].

> We define a stationary Unruh state {-)u, which is
Hadamard in TUIT U III, and a stationary com-
parison state (-)¢, which is Hadamard in IIUIV. i~

» To investigate the divergence of the stress tensor near CH”, we compute

(Tw)v = (Tw)v — (Tw)u + (Tw)uv — (Tw)c + (Tw)c

/ I

Can be controlled Can be evaluated Regular
using results for numerically. across CHF
the classical case. Yields ~ CV 2.

Yields ~ (— V)=,



(Tw)v — (Tw)u

> (-)u defined as the vacuum w.r.t. to the Unruh
modes [Hawking 1975, Unruh 1976]

Vim ~ Yem(0, ¢)e ™ on Ho NHE
VP~ Yem(0,0)e ™ onHT NH
» Well-definedness and Hadamard property from
propagation of singularities and decay

properties on RNdS [Hintz & Vasy 2017] similarly to
Schwarzschild case [Dappiaggi, Moretti, Pinamonti 2011].
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> (-)u defined as the vacuum w.r.t. to the Unruh
modes [Hawking 1975, Unruh 1976]

Wi ~ Yim(0, ¢)e ™ on Ho NHE
VP~ Yem(0,0)e ™ onHT NH
» Well-definedness and Hadamard property from
propagation of singularities and decay

properties on RNdS [Hintz & Vasy 2017] similarly to
Schwarzschild case [Dappiaggi, Moretti, Pinamonti 2011].

W(x, x) = (6(x)¢(x))w — ($(x)$(x"))u

smooth in T U IT U III. [Verch 1994
T

W(x, x') = 33; 4 (x)5(x')
(s N)%-b € G~ (0)

and Sobolev embeddmg thms: «—— Z |[bjl|Em < 00 Vm

Decay estimates [Hintz & Vasy 2017]

tuw (= ) lleew_y < 225 11bj H2m —
for 1/p > 2 — 23 with 8 > > | (Tw)w — (Tw)u < (=V) 22, |




(Tw)v —(Tw)c

» ()¢ as the vacuum state w.r.t. Unruh modes on CH" UCHT™.
> Is Hadamard in ITUIV.



(Tw)v —(Tw)c

v

(Y as the vacuum state w.r.t. Unruh modes on CH" UCH™.
Is Hadamard in IIU IV.
ComPUte 6 = <Tvv>U - <Tvv>C on CHL:

Cnr~ ;(26 + 1)/0 dw wne(w).

The “density of states” n;(w) expressable in terms
of transmission and reflection coefficients Te¢, Rowe
for Boulware modes e~ ““. Must be computed
numerically.

By stationarity, we have the same value on CHF, so

<TVV>U — <Tvv>c ~ Eﬂ:zviz.



(Tw)v —(Tw)c

v

(Y as the vacuum state w.r.t. Unruh modes on CH" UCH™.
Is Hadamard in IIU IV.
ComPUte 6 = <Tvv>U - <Tvv>C on CHL:

Cnr~ ;(26 + 1)/0 dw wne(w).

The “density of states” n;(w) expressable in terms
of transmission and reflection coefficients Te¢, Rowe
for Boulware modes e~ ““. Must be computed
numerically.

By stationarity, we have the same value on CHF, so
<TVV>U — <Tvv>c ~ Eﬂ:zviz.

Generically € # 0, both signs possible.

Compatible with results on RN [Zilberman et al 2019].

[Hollands, Klein, Z. 2020]
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» Strong quantum effects near the Cauchy horizon inside BHs!
> Global effect!
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Rw ~ CV =2 corresponds to strong curvature singularity [Tipler 1077].
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v

> Area spanned by spacelike Jacobi vector fields Z along light-like geodesic
- approaching CH vanishes (C > 0) or diverges (C < 0) on CH.

Infinite crushing (C > 0) or stretching (C < 0) of observer.

v

CcC>0 Cc<o0

% %
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